Menu Close

X-3-4X-2-6X-24-0-




Question Number 159179 by cortano last updated on 14/Nov/21
  X^3 −4X^2 −6X−24 = 0
$$\:\:\mathcal{X}^{\mathrm{3}} −\mathrm{4}\mathcal{X}^{\mathrm{2}} −\mathrm{6}\mathcal{X}−\mathrm{24}\:=\:\mathrm{0} \\ $$
Answered by mr W last updated on 14/Nov/21
let X=x+(4/3)  x^3 +3×(4/3)x^2 +3×((16)/9)x+((64)/(27))−4×x^2 −4×2x×(4/3)−4×((16)/9)−6x−6×(4/3)−24=0  x^3 −((34x)/3)−((992)/(27))=0  Δ=(√(−((34^3 )/9^3 )+((496^2 )/(27^2 ))))=((2(√(638)))/3)  ⇒x=((((2(√(638)))/3)+((496)/(27))))^(1/3) −((((2(√(638)))/3)−((496)/(27))))^(1/3)   ⇒X=(1/3)(4+((18(√(638))+496))^(1/3) −((18(√(638))−496))^(1/3) )≈5.7635
$${let}\:\mathcal{X}={x}+\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${x}^{\mathrm{3}} +\mathrm{3}×\frac{\mathrm{4}}{\mathrm{3}}{x}^{\mathrm{2}} +\mathrm{3}×\frac{\mathrm{16}}{\mathrm{9}}{x}+\frac{\mathrm{64}}{\mathrm{27}}−\mathrm{4}×{x}^{\mathrm{2}} −\mathrm{4}×\mathrm{2}{x}×\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{4}×\frac{\mathrm{16}}{\mathrm{9}}−\mathrm{6}{x}−\mathrm{6}×\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{24}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} −\frac{\mathrm{34}{x}}{\mathrm{3}}−\frac{\mathrm{992}}{\mathrm{27}}=\mathrm{0} \\ $$$$\Delta=\sqrt{−\frac{\mathrm{34}^{\mathrm{3}} }{\mathrm{9}^{\mathrm{3}} }+\frac{\mathrm{496}^{\mathrm{2}} }{\mathrm{27}^{\mathrm{2}} }}=\frac{\mathrm{2}\sqrt{\mathrm{638}}}{\mathrm{3}} \\ $$$$\Rightarrow{x}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}\sqrt{\mathrm{638}}}{\mathrm{3}}+\frac{\mathrm{496}}{\mathrm{27}}}−\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}\sqrt{\mathrm{638}}}{\mathrm{3}}−\frac{\mathrm{496}}{\mathrm{27}}} \\ $$$$\Rightarrow\mathcal{X}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{4}+\sqrt[{\mathrm{3}}]{\mathrm{18}\sqrt{\mathrm{638}}+\mathrm{496}}−\sqrt[{\mathrm{3}}]{\mathrm{18}\sqrt{\mathrm{638}}−\mathrm{496}}\right)\approx\mathrm{5}.\mathrm{7635} \\ $$
Commented by cortano last updated on 14/Nov/21
waw amazing
$${waw}\:{amazing} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *