Question Number 174356 by behi834171 last updated on 30/Jul/22
$$\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{9}\boldsymbol{{x}}−\mathrm{14}=\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{1}.\:\frac{\mathrm{1}}{\boldsymbol{{x}}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\mathrm{1}}{\boldsymbol{{x}}_{\mathrm{2}} ^{\mathrm{2}} }+\frac{\mathrm{1}}{\boldsymbol{{x}}_{\mathrm{3}} ^{\mathrm{2}} }=? \\ $$$$\:\:\:\:\:\mathrm{2}.\:\Sigma\:\frac{\boldsymbol{{x}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{{x}}_{\mathrm{2}} ^{\mathrm{2}} }{\boldsymbol{{x}}_{\mathrm{3}} }=? \\ $$
Answered by behi834171 last updated on 30/Jul/22
$${let}:\:\:\:{y}=\frac{\mathrm{1}}{{x}}\Rightarrow\frac{\mathrm{1}}{{y}^{\mathrm{3}} }+\frac{\mathrm{4}}{{y}^{\mathrm{2}} }−\frac{\mathrm{9}}{{y}}−\mathrm{14}=\mathrm{0} \\ $$$$\Rightarrow\boldsymbol{{y}}^{\mathrm{3}} +\frac{\mathrm{9}}{\mathrm{14}}\boldsymbol{{y}}^{\mathrm{2}} −\frac{\mathrm{2}}{\mathrm{7}}\boldsymbol{{y}}−\frac{\mathrm{1}}{\mathrm{14}}=\mathrm{0} \\ $$$$\Sigma\frac{\mathrm{1}}{\boldsymbol{{x}}_{\boldsymbol{{i}}} ^{\mathrm{2}} }=\Sigma\boldsymbol{{y}}_{\boldsymbol{{i}}} ^{\mathrm{2}} =\left(\Sigma\boldsymbol{{y}}\right)^{\mathrm{2}} −\mathrm{2}\left(\Sigma\boldsymbol{{y}}_{\boldsymbol{{i}}} .\boldsymbol{{y}}_{\boldsymbol{{j}}} \right)= \\ $$$$=\left(−\frac{\mathrm{9}}{\mathrm{14}}\right)^{\mathrm{2}} −\mathrm{2}\left(−\frac{\mathrm{2}}{\mathrm{7}}\right)=\frac{\mathrm{81}}{\mathrm{196}}+\frac{\mathrm{4}}{\mathrm{7}}=\frac{\mathrm{81}+\mathrm{112}}{\mathrm{196}}= \\ $$$$=\frac{\mathrm{193}}{\mathrm{196}}\:\:\:\:.\blacksquare \\ $$$$\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{c}}=\frac{\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab}}{{c}}=\frac{\left(−\mathrm{4}−{c}\right)^{\mathrm{2}} −\mathrm{2}\frac{{abc}}{{c}}}{{c}}= \\ $$$$=\frac{\mathrm{16}+\mathrm{8}{c}+{c}^{\mathrm{2}} −\frac{\mathrm{28}}{{c}}}{{c}}=\frac{\mathrm{16}{c}+\mathrm{8}{c}^{\mathrm{2}} +{c}^{\mathrm{3}} −\mathrm{28}}{{c}^{\mathrm{2}} }= \\ $$$$=\frac{\mathrm{16}}{\boldsymbol{{c}}}+\boldsymbol{{c}}−\frac{\mathrm{28}}{\boldsymbol{{c}}^{\mathrm{2}} }+\mathrm{8}\Rightarrow \\ $$$$\Sigma\frac{\boldsymbol{{x}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{{x}}_{\mathrm{2}} ^{\mathrm{2}} }{\boldsymbol{{x}}_{\mathrm{3}} }=\mathrm{24}+\Sigma\boldsymbol{{x}}_{\boldsymbol{{i}}} +\mathrm{16}\Sigma\frac{\mathrm{1}}{\boldsymbol{{x}}_{\boldsymbol{{i}}} }−\mathrm{28}\Sigma\frac{\mathrm{1}}{\boldsymbol{{x}}_{\boldsymbol{{i}}} ^{\mathrm{2}} }= \\ $$$$=\mathrm{24}+\left(−\mathrm{4}\right)+\mathrm{16}\left(−\frac{\mathrm{9}}{\mathrm{14}}\right)−\mathrm{28}\left(\frac{\mathrm{193}}{\mathrm{196}}\right)= \\ $$$$=\frac{−\mathrm{28}×\mathrm{193}+\mathrm{24}×\mathrm{196}−\mathrm{14}×\mathrm{16}×\mathrm{9}−\mathrm{4}×\mathrm{196}}{\mathrm{196}}= \\ $$$$=−\frac{\mathrm{875}}{\mathrm{49}}\:\:\:\:\:.\:\blacksquare \\ $$
Commented by Tawa11 last updated on 31/Jul/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by BaliramKumar last updated on 30/Jul/22
$$\mathrm{1}.\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\beta^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\gamma^{\mathrm{2}} }\:=\:\left(\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}+\frac{\mathrm{1}}{\gamma}\right)^{\mathrm{2}} \:−\:\mathrm{2}\left(\frac{\mathrm{1}}{\alpha\beta}\:+\:\frac{\mathrm{1}}{\beta\gamma}\:+\:\frac{\mathrm{1}}{\gamma\alpha}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\frac{\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha\beta\gamma}\right)^{\mathrm{2}} \:−\:\mathrm{2}\left(\frac{\alpha+\beta+\gamma}{\alpha\beta\gamma}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\frac{−\mathrm{9}}{\mathrm{14}}\right)^{\mathrm{2}} \:−\mathrm{2}\left(\frac{−\mathrm{4}}{\mathrm{14}}\right)\:=\:\frac{\mathrm{81}}{\mathrm{196}}\:+\:\frac{\mathrm{8}}{\mathrm{14}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{193}}{\mathrm{196}}\: \\ $$
Commented by behi834171 last updated on 30/Jul/22
$${thank}\:{you}\:{sir}\:{for}\:{your}\:{time}. \\ $$$${right}\:{answer}\checkmark. \\ $$
Commented by Tawa11 last updated on 31/Jul/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$