Question Number 56467 by ajfour last updated on 17/Mar/19

Answered by ajfour last updated on 17/Mar/19
![let x=((pt+q)/(t+1)) ⇒ (pt+q)^3 +a(pt+q)^2 (t+1) +b(pt+q)(t+1)^2 +c(t+1)^3 =0 (p^3 +ap^2 +bp+c)t^3 +(3p^2 q+ap^2 +2apq+bq+2bp+3c)t^2 +(3pq^2 +2apq+aq^2 +bp+2bq+3c)t +q^3 +aq^2 +bq+c=0 Let 3p^2 q+ap^2 +2apq+bq+2bp+3c=0 & 3pq^2 +2apq+aq^2 +bp+2bq+3c=0 subtracting 3pq+a(p+q)−b+2b=0 ⇒ 3pq+a(p+q)+b=0 (i) using this −p[a(p+q)+b]+ap^2 +2apq+bq +2bp+3c = 0 ⇒ apq+bq+bp+3c=0 ⇒ apq+b(p+q)+3c=0 (ii) ⇒ p+q=( determinant ((3,(−b)),(a,(−3c)))/ determinant ((3,a),(a,b)))=((−9c+ab)/(3b−a^2 )) =s ⇒ pq=( determinant (((−b),a),((−3c),b))/ determinant ((3,a),(a,b)))=((−b^2 +3ac)/(3b−a^2 )) =m ⇒ p,q are roots of eq. z^2 −sz+m = 0 z=(s/2)±(√((s^2 /4)−m)) So (p^3 +ap^2 +bp+c)t^3 +q^3 +aq^2 +bq+c = 0 t=−(((q^3 +aq^2 +bq+c)/(p^3 +ap^2 +bp+c)))^(1/3) x=((pt+q)/(t+1)) .](https://www.tinkutara.com/question/Q56472.png)
Commented by behi83417@gmail.com last updated on 17/Mar/19
![let try for: [x^3 +2x^2 +3x+4=0] {a=2,b=3,c=4} p+q=((−9c+ab)/(3b−a^2 ))=((−9×4+2×3)/(9−4))=−6 pq=((−b^2 +3ac)/(3b−a^2 ))=((−9+3×2×4)/5)=+3 ⇒z^2 +6z+3=0⇒z=((−6±(√(36−12)))/2)= ⇒z=−3±(√6)⇒ { ((p=−3+(√6)=−0.55,q=−3−(√6)=−5.44)),((p=−3−(√6),q=−3+(√6))) :} t^3 =−((q^3 +aq^2 +bq+c)/(p^3 +ap^2 +bp+c))=−(((−5.44)^3 +2(−5.44)^2 +3(−5.44)+4)/((−0.55)^3 +2(−0.55)^2 +3(−0.55)+4))=40.924 t=(40.925)^(1/3) =3.446 x=((pt+q)/(t+1))=((−0.55×3.446−5.44)/(3.446+1))=−1.65[ok!]](https://www.tinkutara.com/question/Q56506.png)
Commented by mr W last updated on 17/Mar/19
��������
Commented by behi83417@gmail.com last updated on 17/Mar/19

Commented by behi83417@gmail.com last updated on 17/Mar/19
