Question Number 43756 by ajfour last updated on 15/Sep/18
$$\:\:\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{px}}+\boldsymbol{{q}}\:=\:\mathrm{0} \\ $$$$\boldsymbol{{If}}\:\boldsymbol{{equation}}\:\boldsymbol{{has}}\:\boldsymbol{{all}}\:\boldsymbol{{its}}\:\boldsymbol{{roots}} \\ $$$$\boldsymbol{{real}},\:\boldsymbol{{find}}\:\boldsymbol{{them}}. \\ $$
Answered by ajfour last updated on 15/Sep/18
$$\:\:{A}\:{poor}\:{self}\:{attempt}\:: \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\:\mathrm{3sin}\:\thetaβ\mathrm{4sin}\:^{\mathrm{3}} \theta\:=\:\mathrm{sin}\:\mathrm{3}\theta \\ $$$${let}\:\:\mathrm{sin}\:\boldsymbol{\theta}=\:\boldsymbol{{mx}}\: \\ $$$${k}\:{such}\:{that}\:{it}\:{makes}\:{this}\:{equation} \\ $$$${equivalent}\:{to}\:{that}\:{in}\:{question}. \\ $$$$\:\Rightarrow\:\:\mathrm{3}\boldsymbol{{mx}}β\mathrm{4}\boldsymbol{{m}}^{\mathrm{3}} \boldsymbol{{x}}^{\mathrm{3}} \:=\:\mathrm{sin}\:\mathrm{3}\boldsymbol{\theta} \\ $$$$\:\:\:\:{or}\:\:\:\boldsymbol{{x}}^{\mathrm{3}} β\frac{\mathrm{3}\boldsymbol{{x}}}{\mathrm{4}\boldsymbol{{m}}^{\mathrm{2}} }\:β\frac{\mathrm{sin}\:\mathrm{3}\boldsymbol{\theta}}{\mathrm{4}\boldsymbol{{m}}^{\mathrm{3}} }\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:{p}\:=\:β\frac{\mathrm{3}}{\mathrm{4}{m}^{\mathrm{2}} }\:\:\Rightarrow\:{m}=\pm\sqrt{\frac{β\mathrm{3}}{\mathrm{4}{p}}} \\ $$$$\:\:\:\:\:\:\:{q}\:=\:β\frac{\mathrm{sin}\:\mathrm{3}\theta}{\mathrm{4}{m}^{\mathrm{3}} }\:\: \\ $$$${or}\:\:\:\mathrm{sin}\:\left(\mathrm{3}\thetaβ\mathrm{2}{k}\pi\right)\:=\:β\mathrm{4}{m}^{\mathrm{3}} {q} \\ $$$$\:\mathrm{sin}\:\theta\:=\:\mathrm{sin}\left[\:\frac{\mathrm{2}{k}\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{β\mathrm{1}} \left(\pm\frac{\mathrm{3}{q}}{{p}}\sqrt{\frac{β\mathrm{3}}{\mathrm{4}{p}}}\:\right)\right] \\ $$$$\:\Rightarrow\:\pm\sqrt{\frac{β\mathrm{3}}{\mathrm{4}{p}}}\:\boldsymbol{{x}}\:=\:\mathrm{sin}\left[\:\frac{\mathrm{2}{k}\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{β\mathrm{1}} \left(\pm\frac{\mathrm{3}{q}}{{p}}\sqrt{\frac{β\mathrm{3}}{\mathrm{4}{p}}}\:\right)\right] \\ $$$$\Rightarrow\:{x}\:=\:\pm\sqrt{\frac{β\mathrm{4}{p}}{\mathrm{3}}}\:\mathrm{sin}\:\left[\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\pm\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{β\mathrm{1}} \left(\frac{\mathrm{3}{q}}{{p}}\sqrt{\frac{β\mathrm{3}}{\mathrm{4}{p}}}\:\right)\right] \\ $$$$\:\:{unless}\:{i}\:{know}\:{how}\:{to}\:{choose} \\ $$$${the}\:{signs},\:{i}\:{might}\:{obtain}\:\mathrm{12}\:{roots}. \\ $$$${please}\:{help}.. \\ $$
Commented by MJS last updated on 15/Sep/18
$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$$\mathrm{3}\:\mathrm{real}\:\mathrm{roots}\neq\mathrm{0}\:\Leftrightarrow\:\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} <\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:{p}<\mathrm{0}\:\wedge\:\mathrm{27}{q}^{\mathrm{2}} +\mathrm{4}{p}^{\mathrm{3}} <\mathrm{0}\:\Rightarrow\:\mid\frac{\mathrm{27}{q}^{\mathrm{2}} }{\mathrm{4}{p}^{\mathrm{3}} }\mid<\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{put}\:{x}={az},\:{a}=\mathrm{2}\sqrt{β\frac{{p}}{\mathrm{3}}} \\ $$$${a}^{\mathrm{3}} {z}^{\mathrm{3}} +{apz}+{q}=\mathrm{0} \\ $$$${z}^{\mathrm{3}} +\frac{{p}}{{a}^{\mathrm{2}} }{z}+\frac{{q}}{{a}^{\mathrm{3}} }=\mathrm{0} \\ $$$${a}^{\mathrm{2}} =β\frac{\mathrm{4}{p}}{\mathrm{3}}\:\:\:\:\:{a}^{\mathrm{3}} =β\frac{\mathrm{8}{p}}{\mathrm{3}}\sqrt{β\frac{{p}}{\mathrm{3}}} \\ $$$${z}^{\mathrm{3}} β\frac{\mathrm{3}}{\mathrm{4}}{z}β\frac{\mathrm{3}{q}}{\mathrm{8}{p}}\sqrt{β\frac{\mathrm{3}}{{p}}}=\mathrm{0} \\ $$$$\mathrm{4}{z}^{\mathrm{3}} β\mathrm{3}{z}β\frac{\mathrm{3}{q}}{\mathrm{2}}\sqrt{β\frac{\mathrm{3}}{{p}}}=\mathrm{0} \\ $$$$\left(\frac{\mathrm{3}{q}}{\mathrm{2}}\sqrt{β\frac{\mathrm{3}}{{p}}}\right)^{\mathrm{2}} =\mid\frac{\mathrm{27}{q}^{\mathrm{2}} }{\mathrm{4}{p}^{\mathrm{3}} }\mid<\mathrm{1}\:\Rightarrow\:β\mathrm{1}<\frac{\mathrm{3}{q}}{\mathrm{2}}\sqrt{β\frac{\mathrm{3}}{{p}}}<\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{put}\:β\frac{\mathrm{3}{q}}{\mathrm{2}}\sqrt{β\frac{\mathrm{3}}{{p}}}=\mathrm{sin}\:\mathrm{3}\alpha \\ $$$${z}^{\mathrm{3}} β\frac{\mathrm{3}}{\mathrm{4}}{z}+\frac{\mathrm{sin}\:\mathrm{3}\alpha}{\mathrm{4}}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{put}\:{a}=β\mathrm{2}\sqrt{β\frac{{p}}{\mathrm{3}}}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{same}\:\mathrm{equation} \\ $$$$\mathrm{by}\:\mathrm{putting}\:\frac{\mathrm{3}{q}}{\mathrm{2}}\sqrt{β\frac{\mathrm{3}}{{p}}}=\mathrm{sin}\:\mathrm{3}\alpha \\ $$