Menu Close

x-3-x-16-0-




Question Number 89687 by student work last updated on 18/Apr/20
x^3 +x−16=0
$${x}^{\mathrm{3}} +{x}−\mathrm{16}=\mathrm{0} \\ $$
Commented by mr W last updated on 18/Apr/20
https://en.m.wikipedia.org/wiki/Cubic_equation
Commented by mr W last updated on 18/Apr/20
it′s already solved in Q89653.  method is also told you. have you tried  to study the method? if you just want  to know the formula, you can find it  in internet. if you want to understand  it, you should study it through some  reading by yourself.
$${it}'{s}\:{already}\:{solved}\:{in}\:{Q}\mathrm{89653}. \\ $$$${method}\:{is}\:{also}\:{told}\:{you}.\:{have}\:{you}\:{tried} \\ $$$${to}\:{study}\:{the}\:{method}?\:{if}\:{you}\:{just}\:{want} \\ $$$${to}\:{know}\:{the}\:{formula},\:{you}\:{can}\:{find}\:{it} \\ $$$${in}\:{internet}.\:{if}\:{you}\:{want}\:{to}\:{understand} \\ $$$${it},\:{you}\:{should}\:{study}\:{it}\:{through}\:{some} \\ $$$${reading}\:{by}\:{yourself}. \\ $$
Commented by MJS last updated on 18/Apr/20
Cardano′s Method       ax^3 +bx^2 +cx+d=0  (1) divide by a ⇒       x^3 +(b/a)x^2 +(c/a)x+(d/a)=0  (2) let z=x−(b/(3a)) ⇒       z^3 +((3ac−b^2 )/(3a^2 ))z+((27a^2 d−9abc+2b^3 )/(27a^3 ))=0  (3) let ((3ac−b^2 )/(3a^2 ))=p and ((27a^2 d−9abc+2b^3 )/(27a^3 ))=q ⇒       z^3 +pz+q=0 ⇔ z^3 =−pz−q  (4) Cardano′s new idea: let z=u+v on lhs       (u+v)^3 =−pz−q       u^3 +3u^2 v+3uv^2 +v^3 =−pz−q       3uv(u+v)+u^3 +v^3 =−pz−q       3uvz+u^3 +v^3 =−pz−q       by matching constants we get        { ((I.  uv=−(p/3) ⇔ u^3 v^3 =−(p^3 /(27)))),((II. u^3 +v^3 =−q)) :}  (5) let u^3 =s and v^3 =t ⇒        { ((I.  st=−(p^3 /(27)))),((II. s+t=−q)) :}       this leads to a quadratic:       I. ⇒ s=−(p^3 /(27t)); insert in II. ⇒       t−(p^3 /(27t))=−q ⇔ t^2 +qt−(p^3 /(27))=0 ⇒       ⇒ t=−(q/2)±(√((q^2 /4)+(p^3 /(27))))       ⇒ s=−(q/2)∓(√((q^2 /4)+(p^3 /(27))))       ⇒ we are free to choose the “+” value       for t and the “−” value for s       ⇒ u=((−(q/2)−(√((q^2 /4)+(p^3 /(27))))))^(1/3)  and v=((−(q/2)+(√((q^2 /4)+(p^3 /(27))))))^(1/3)        ⇒ z_1 =u+v            z^3 +pz+q=(z−z_1 )(z^2 +(u+v)z+u^2 −uv+v^2 )       and we can solve this    the only limitation is  D=(q^2 /4)+(p^3 /(27))≥0  if D<0 we need the trigonometric solution
$$\mathrm{Cardano}'\mathrm{s}\:\mathrm{Method} \\ $$$$\:\:\:\:\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{divide}\:\mathrm{by}\:{a}\:\Rightarrow \\ $$$$\:\:\:\:\:{x}^{\mathrm{3}} +\frac{{b}}{{a}}{x}^{\mathrm{2}} +\frac{{c}}{{a}}{x}+\frac{{d}}{{a}}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{let}\:{z}={x}−\frac{{b}}{\mathrm{3}{a}}\:\Rightarrow \\ $$$$\:\:\:\:\:{z}^{\mathrm{3}} +\frac{\mathrm{3}{ac}−{b}^{\mathrm{2}} }{\mathrm{3}{a}^{\mathrm{2}} }{z}+\frac{\mathrm{27}{a}^{\mathrm{2}} {d}−\mathrm{9}{abc}+\mathrm{2}{b}^{\mathrm{3}} }{\mathrm{27}{a}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{let}\:\frac{\mathrm{3}{ac}−{b}^{\mathrm{2}} }{\mathrm{3}{a}^{\mathrm{2}} }={p}\:\mathrm{and}\:\frac{\mathrm{27}{a}^{\mathrm{2}} {d}−\mathrm{9}{abc}+\mathrm{2}{b}^{\mathrm{3}} }{\mathrm{27}{a}^{\mathrm{3}} }={q}\:\Rightarrow \\ $$$$\:\:\:\:\:{z}^{\mathrm{3}} +{pz}+{q}=\mathrm{0}\:\Leftrightarrow\:{z}^{\mathrm{3}} =−{pz}−{q} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{new}\:\mathrm{idea}:\:\mathrm{let}\:{z}={u}+{v}\:\mathrm{on}\:\mathrm{lhs} \\ $$$$\:\:\:\:\:\left({u}+{v}\right)^{\mathrm{3}} =−{pz}−{q} \\ $$$$\:\:\:\:\:{u}^{\mathrm{3}} +\mathrm{3}{u}^{\mathrm{2}} {v}+\mathrm{3}{uv}^{\mathrm{2}} +{v}^{\mathrm{3}} =−{pz}−{q} \\ $$$$\:\:\:\:\:\mathrm{3}{uv}\left({u}+{v}\right)+{u}^{\mathrm{3}} +{v}^{\mathrm{3}} =−{pz}−{q} \\ $$$$\:\:\:\:\:\mathrm{3}{uvz}+{u}^{\mathrm{3}} +{v}^{\mathrm{3}} =−{pz}−{q} \\ $$$$\:\:\:\:\:\mathrm{by}\:\mathrm{matching}\:\mathrm{constants}\:\mathrm{we}\:\mathrm{get} \\ $$$$\:\:\:\:\:\begin{cases}{\mathrm{I}.\:\:{uv}=−\frac{{p}}{\mathrm{3}}\:\Leftrightarrow\:{u}^{\mathrm{3}} {v}^{\mathrm{3}} =−\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}\\{\mathrm{II}.\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} =−{q}}\end{cases} \\ $$$$\left(\mathrm{5}\right)\:\mathrm{let}\:{u}^{\mathrm{3}} ={s}\:\mathrm{and}\:{v}^{\mathrm{3}} ={t}\:\Rightarrow \\ $$$$\:\:\:\:\:\begin{cases}{\mathrm{I}.\:\:{st}=−\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}\\{\mathrm{II}.\:{s}+{t}=−{q}}\end{cases} \\ $$$$\:\:\:\:\:\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{quadratic}: \\ $$$$\:\:\:\:\:\mathrm{I}.\:\Rightarrow\:{s}=−\frac{{p}^{\mathrm{3}} }{\mathrm{27}{t}};\:\mathrm{insert}\:\mathrm{in}\:\mathrm{II}.\:\Rightarrow \\ $$$$\:\:\:\:\:{t}−\frac{{p}^{\mathrm{3}} }{\mathrm{27}{t}}=−{q}\:\Leftrightarrow\:{t}^{\mathrm{2}} +{qt}−\frac{{p}^{\mathrm{3}} }{\mathrm{27}}=\mathrm{0}\:\Rightarrow \\ $$$$\:\:\:\:\:\Rightarrow\:{t}=−\frac{{q}}{\mathrm{2}}\pm\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}} \\ $$$$\:\:\:\:\:\Rightarrow\:{s}=−\frac{{q}}{\mathrm{2}}\mp\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{we}\:\mathrm{are}\:\mathrm{free}\:\mathrm{to}\:\mathrm{choose}\:\mathrm{the}\:“+''\:\mathrm{value} \\ $$$$\:\:\:\:\:\mathrm{for}\:{t}\:\mathrm{and}\:\mathrm{the}\:“−''\:\mathrm{value}\:\mathrm{for}\:{s} \\ $$$$\:\:\:\:\:\Rightarrow\:{u}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}−\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}}\:\mathrm{and}\:{v}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}} \\ $$$$\:\:\:\:\:\Rightarrow\:{z}_{\mathrm{1}} ={u}+{v} \\ $$$$\:\:\:\:\:\:\:\:\:\:{z}^{\mathrm{3}} +{pz}+{q}=\left({z}−{z}_{\mathrm{1}} \right)\left({z}^{\mathrm{2}} +\left({u}+{v}\right){z}+{u}^{\mathrm{2}} −{uv}+{v}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this} \\ $$$$ \\ $$$$\mathrm{the}\:\mathrm{only}\:\mathrm{limitation}\:\mathrm{is} \\ $$$${D}=\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}\geqslant\mathrm{0} \\ $$$$\mathrm{if}\:{D}<\mathrm{0}\:\mathrm{we}\:\mathrm{need}\:\mathrm{the}\:\mathrm{trigonometric}\:\mathrm{solution} \\ $$
Answered by TANMAY PANACEA. last updated on 18/Apr/20
f(x)=x^3 +x−16  f(1)=−14  f(0)=−16  f(2)=−6  f(3)=14  f(4)=54  now   f(2)<0  but f(3)>0  so one root lies between 2 and 3  3>x>2  f(−1)=−18  f(−2)=−26  so i think x^3 +x−16=0  has only one solution where 3>x>2
$${f}\left({x}\right)={x}^{\mathrm{3}} +{x}−\mathrm{16} \\ $$$${f}\left(\mathrm{1}\right)=−\mathrm{14} \\ $$$${f}\left(\mathrm{0}\right)=−\mathrm{16} \\ $$$${f}\left(\mathrm{2}\right)=−\mathrm{6} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{14} \\ $$$${f}\left(\mathrm{4}\right)=\mathrm{54} \\ $$$${now}\:\:\:{f}\left(\mathrm{2}\right)<\mathrm{0}\:\:{but}\:{f}\left(\mathrm{3}\right)>\mathrm{0} \\ $$$${so}\:{one}\:{root}\:{lies}\:{between}\:\mathrm{2}\:{and}\:\mathrm{3} \\ $$$$\mathrm{3}>{x}>\mathrm{2} \\ $$$${f}\left(−\mathrm{1}\right)=−\mathrm{18} \\ $$$${f}\left(−\mathrm{2}\right)=−\mathrm{26} \\ $$$${so}\:{i}\:{think}\:{x}^{\mathrm{3}} +{x}−\mathrm{16}=\mathrm{0} \\ $$$${has}\:{only}\:{one}\:{solution}\:{where}\:\mathrm{3}>{x}>\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *