Menu Close

x-3-x-6-1-dx-




Question Number 41084 by Tawa1 last updated on 01/Aug/18
∫ (x^3 /(x^6  + 1)) dx
x3x6+1dx
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
∫(x^3 /((x^2 +1)(x^4 −x^2 +1)))dx  t=x^2   dt=2xdx  (1/2)∫((tdt)/((t+1)(t^2 −t+1)))  (t/((t+1)(t^2 −t+1)))=(p/(t+1))+((qt+r)/(t^2 −t+1))  t=pt^2 −pt+p+qt^2 +rt+qt+r  t=t^2 (p+q)+t(−p+q+r)+p+r  p+q=0  −p+q+r=1  p+r=0  r+r+r=1  r=(1/3)  p=−(1/3)  q=(1/3)  ∫(((−1)/3)/(t+1))dt+∫(((1/3)t+(1/3))/(t^2 −t+1))dt  =((−1)/3)∫(dt/(t+1))+(1/3)∫((t+1)/(t^2 −t+1))dt  .((−1)/3)∫(dt/(t+1))+(1/6)∫((2t−1+3)/(t^2 −t+1))dt  ((−1)/3)∫(dt/(t+1))+(1/6)∫((2t−1)/(t^2 −t+1))dt+(3/6)∫(dt/(t^2 −2t.(1/2)+(1/4)+1−(1/4)))  ((−1)/3)∫(dt/(t+1))+(1/6)∫((d(t^2 −t+1))/(t^2 −t+1))+(3/6)∫(dt/((t−(1/2))^2 +((((√3) )/2))^2 ))  ((−1)/3)ln(t+1)+(1/6)ln(t^2 −t+1)+(3/6)×(2/( (√3)))tan^(−1) (((t−(1/2))/(((√3) )/2)))  now put x^2   inplace of t  ((−1)/3)ln(x^2 +1)+(1/6)ln(x^4 −x^2 +1)+(3/6)×(2/( (√3)))tan^(−2) (((x^2 −(1/2))/(((√3) )/2))
x3(x2+1)(x4x2+1)dxt=x2dt=2xdx12tdt(t+1)(t2t+1)t(t+1)(t2t+1)=pt+1+qt+rt2t+1t=pt2pt+p+qt2+rt+qt+rt=t2(p+q)+t(p+q+r)+p+rp+q=0p+q+r=1p+r=0r+r+r=1r=13p=13q=1313t+1dt+13t+13t2t+1dt=13dtt+1+13t+1t2t+1dt.13dtt+1+162t1+3t2t+1dt13dtt+1+162t1t2t+1dt+36dtt22t.12+14+11413dtt+1+16d(t2t+1)t2t+1+36dt(t12)2+(32)213ln(t+1)+16ln(t2t+1)+36×23tan1(t1232)nowputx2inplaceoft13ln(x2+1)+16ln(x4x2+1)+36×23tan2(x21232
Commented by Tawa1 last updated on 01/Aug/18
Wow. God bless you sir
Wow.Godblessyousir
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18
good night...
goodnight

Leave a Reply

Your email address will not be published. Required fields are marked *