Question Number 156639 by ajfour last updated on 13/Oct/21
$$\mathrm{x}^{\mathrm{3}} =\mathrm{x}+\mathrm{c} \\ $$$$\mathrm{x}^{\mathrm{4}} =\mathrm{x}^{\mathrm{2}} +\mathrm{cx} \\ $$$$\mathrm{let}\:\:\mathrm{cx}=\mathrm{kx}^{\mathrm{4}} +\mathrm{hx}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{kx}^{\mathrm{3}} +\mathrm{hx}=\mathrm{c} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{1}+\mathrm{c}\left(\mathrm{kx}^{\mathrm{2}} +\mathrm{h}\right) \\ $$$$\mathrm{x}^{\mathrm{2}} =\frac{\mathrm{1}+\mathrm{ch}}{\mathrm{1}−\mathrm{ck}} \\ $$$$\left(\frac{\mathrm{1}+\mathrm{ch}}{\mathrm{1}−\mathrm{ck}}\right)\left\{\frac{\mathrm{k}\left(\mathrm{1}+\mathrm{ch}\right)}{\mathrm{1}−\mathrm{ck}}+\mathrm{h}\right\}^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+\mathrm{ch}\right)\left(\mathrm{h}+\mathrm{k}\right)^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{ck}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\:\:\left(\mathrm{1}+\mathrm{ch}\right)\left(\mathrm{h}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} +\mathrm{2hk}\right) \\ $$$$\:\:\:\:=\mathrm{c}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{c}^{\mathrm{3}} \mathrm{k}^{\mathrm{3}} +\mathrm{3c}^{\mathrm{2}} \mathrm{k}^{\mathrm{2}} −\mathrm{3ck}\right) \\ $$$$\mathrm{c}^{\mathrm{5}} \mathrm{k}^{\mathrm{3}} +\left(\mathrm{1}+\mathrm{ch}−\mathrm{3c}^{\mathrm{4}} \right)\mathrm{k}^{\mathrm{2}} \\ $$$$\:\:\:\:\:+\left\{\mathrm{2h}\left(\mathrm{1}+\mathrm{ch}\right)+\mathrm{3c}^{\mathrm{3}} \right\}\mathrm{k} \\ $$$$\:\:\:\:\:+\left(\mathrm{1}+\mathrm{ch}\right)\mathrm{h}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{let}\:\:\mathrm{h}=\mathrm{3c}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{c}}\:\:\Rightarrow \\ $$$$\mathrm{c}^{\mathrm{5}} \mathrm{k}^{\mathrm{3}} +\left\{\mathrm{9c}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{c}}+\mathrm{2c}\left(\mathrm{3c}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{c}}\right)^{\mathrm{2}} \right\}\mathrm{k} \\ $$$$\:\:\:\:+\left\{\mathrm{3c}^{\mathrm{4}} \left(\mathrm{3c}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{c}}\right)^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \right\}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{k}^{\mathrm{3}} +\mathrm{3}\left(\mathrm{6c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{2}} }\right)\mathrm{k} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\mathrm{27c}^{\mathrm{5}} −\mathrm{18c}+\frac{\mathrm{2}}{\mathrm{c}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\mathrm{D}=\left(\frac{\mathrm{27c}^{\mathrm{5}} }{\mathrm{2}}+\mathrm{9c}+\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{3}} }\right)^{\mathrm{2}} +\left(\mathrm{6c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{2}} }\right)^{\mathrm{3}} \\ $$$$… \\ $$