Menu Close

x-3-y-3-z-2-x-3-z-3-y-2-y-3-z-3-x-2-obviously-x-y-z-0-1-2-trying-to-totally-solve-it-let-y-px-z-qx-p-3-1-x-3-q-2-x-2-q-3-1-x-3-p-2-x-2-p-3-q-3-x-3-x-2-x-0-y-0-z-0-x-q-2-




Question Number 176718 by Frix last updated on 25/Sep/22
x^3 +y^3 =z^2   x^3 +z^3 =y^2   y^3 +z^3 =x^2   obviously x=y=z=0∨(1/2)  trying to totally solve it  let y=px∧z=qx  (p^3 +1)x^3 =q^2 x^2   (q^3 +1)x^3 =p^2 x^2   (p^3 +q^3 )x^3 =x^2   ⇒ x=0 ⇒ y=0∧z=0 ★  x=(q^2 /(p^3 +1))  x=(p^2 /(q^3 +1))  x=(1/(p^3 +q^3 ))  ⇒  (p^2 /(q^3 +1))=(q^2 /(p^3 +1))  (p^2 /(q^3 +1))=(1/(p^3 +q^3 ))  ==========  p^5 +p^2 −q^5 −q^2 =0  p^5 +p^2 q^3 −q^3 −1=0  subtracting both  p^2 (q^3 −1)+q^5 −q^3 +q^2 −1=0  (q−1)(p^2 (q^2 +q+1)+q^4 +q^3 +q+1)=0       ⇒ q=1 ⇒ p^5 +p^2 −2=0       (p−1)(p^4 +p^3 +2p+2)=0       ⇒ p=1 ⇒ x=y=z=(1/2) ★       p^4 +p^3 +2p+2=0       no useable exact solutions       p≈−.975564±.528237i       ⇒ x≈.33635∓.515329i       ∧ y≈−.0559113±.680406i       ∧ z=x ★       p≈.475564±1.18273i       ⇒ x≈−.586346±.562464i       ∧ y≈−.944089∓.426001i       ∧ z=x ★  p^2 (q^2 +q+1)+q^4 +q^3 +q+1=0  p^2 =−(((q+1)^2 (q^2 −q+1))/(q^2 +q+1))  we can be sure that (q≠−1⇒p=0)  ⇒ p^2 <0 ⇒ p=±(√((q^2 −q+1)/(q^2 +q+1)))(q+1)i  ...I′ll continue later
x3+y3=z2x3+z3=y2y3+z3=x2obviouslyx=y=z=012tryingtototallysolveitlety=pxz=qx(p3+1)x3=q2x2(q3+1)x3=p2x2(p3+q3)x3=x2x=0y=0z=0x=q2p3+1x=p2q3+1x=1p3+q3p2q3+1=q2p3+1p2q3+1=1p3+q3==========p5+p2q5q2=0p5+p2q3q31=0subtractingbothp2(q31)+q5q3+q21=0(q1)(p2(q2+q+1)+q4+q3+q+1)=0q=1p5+p22=0(p1)(p4+p3+2p+2)=0p=1x=y=z=12p4+p3+2p+2=0nouseableexactsolutionsp.975564±.528237ix.33635.515329iy.0559113±.680406iz=xp.475564±1.18273ix.586346±.562464iy.944089.426001iz=xp2(q2+q+1)+q4+q3+q+1=0p2=(q+1)2(q2q+1)q2+q+1wecanbesurethat(q1p=0)p2<0p=±q2q+1q2+q+1(q+1)iIllcontinuelater
Commented by Tawa11 last updated on 25/Sep/22
Great sir
Greatsir
Answered by behi834171 last updated on 26/Sep/22
y^3 −z^3 =z^2 −y^2 ⇒(y−z)(y^2 +z^2 +yz)=−(y−z)(y+z)  ⇒x=y=z=0  or (1/2)  y^2 +z^2 +yz=−(y+z)  z^2 +x^2 +xz=−(x+z)  x^2 +y^2 +xy=−(x+y)  ⇒y^2 −x^2 +z(y−x)=−(y−x)⇒  ⇒(y−x)(y+x+z+1)=0  ⇒y+x+z=−1  ...
y3z3=z2y2(yz)(y2+z2+yz)=(yz)(y+z)x=y=z=0or12y2+z2+yz=(y+z)z2+x2+xz=(x+z)x2+y2+xy=(x+y)y2x2+z(yx)=(yx)(yx)(y+x+z+1)=0y+x+z=1

Leave a Reply

Your email address will not be published. Required fields are marked *