Menu Close

x-4-1-x-2-x-4-1-dx-




Question Number 52667 by gunawan last updated on 11/Jan/19
∫((x^4 +1)/(x^2 (√(x^4 −1)))) dx
$$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{4}} −\mathrm{1}}}\:{dx} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Jan/19
∫((x^2 +(1/x^2 ))/( (√(x^2 (x^2 −(1/x^2 )))) ))dx  ∫((x+(1/x^3 ))/( (√(x^2 −(1/x^2 )))))dx  k^2 =x^2 −(1/x^2 )  2k×(dk/dx)=2x+(2/x^3 )  kdk=(x+(1/x^3 ))dx  ∫((kdk)/k)  =k+c  =(√(x^2 −(1/x^2 ))) +c
$$\int\frac{{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{\:\sqrt{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}\:}{dx} \\ $$$$\int\frac{{x}+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }}{\:\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}}{dx} \\ $$$${k}^{\mathrm{2}} ={x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\mathrm{2}{k}×\frac{{dk}}{{dx}}=\mathrm{2}{x}+\frac{\mathrm{2}}{{x}^{\mathrm{3}} } \\ $$$${kdk}=\left({x}+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right){dx} \\ $$$$\int\frac{{kdk}}{{k}} \\ $$$$={k}+{c} \\ $$$$=\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:+{c} \\ $$
Commented by gunawan last updated on 11/Jan/19
thank you Sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Jan/19
most welcome...
$${most}\:{welcome}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *