Menu Close

x-4-1-x-5-4x-3-dx-




Question Number 118834 by bramlexs22 last updated on 20/Oct/20
  ∫ ((x^4 +1)/(x^5 +4x^3 )) dx
x4+1x5+4x3dx
Answered by bobhans last updated on 20/Oct/20
 Solve ∫ ((x^4 +1)/(x^5 +4x^3 )) dx.  solution.   ψ = ∫ ((x^4 +1)/(x^3 (x^2 +4))) dx = ∫ ((x+x^(−3) )/(x^2 +4)) dx  ψ=∫ (x/(x^2 +4)) dx + ∫ (x^(−3) /(x^2 +4)) dx  ψ= (1/2)ln (x^2 +4)+∫ (dx/(x^3 (x^2 +4)))  second integral ψ_2 = ∫ (dx/(x^3 (x^2 +4)))  let x = 2tan α   ψ_2  = ∫ ((2sec^2 α dα)/(8tan^3 α(4sec^2 α))) = (1/(16))∫ ((cos^2 α d(sin α))/(sin^3 α))  ψ_2 = ∫ (((1−sin^2 α)/(sin^3 α))) d(sin α)= ∫ (u^(−3) −u^(−1) )du  =−(1/(2u^2 ))−ln (u)+ c = −(1/(2sin^2 x))−ln (sin x) + c  Thus ψ = (1/2)ln (x^2 +4)−ln (sin x)−(1/2)cosec^2 x + c  ψ= ln (((√(x^2 +4))/(sin x)))−((cosec^2 x)/2) + c
Solvex4+1x5+4x3dx.solution.ψ=x4+1x3(x2+4)dx=x+x3x2+4dxψ=xx2+4dx+x3x2+4dxψ=12ln(x2+4)+dxx3(x2+4)secondintegralψ2=dxx3(x2+4)letx=2tanαψ2=2sec2αdα8tan3α(4sec2α)=116cos2αd(sinα)sin3αψ2=(1sin2αsin3α)d(sinα)=(u3u1)du=12u2ln(u)+c=12sin2xln(sinx)+cThusψ=12ln(x2+4)ln(sinx)12cosec2x+cψ=ln(x2+4sinx)cosec2x2+c
Answered by MJS_new last updated on 20/Oct/20
∫((x^4 +1)/(x^3 (x^2 +4)))dx=  =((17)/(16))∫(x/(x^2 +4))dx−(1/(16))∫(dx/x)+(1/4)∫(dx/x^3 )=  =((17)/(32))ln (x^2 +4) −(1/(16))ln ∣x∣ −(1/(8x^2 ))+C
x4+1x3(x2+4)dx==1716xx2+4dx116dxx+14dxx3==1732ln(x2+4)116lnx18x2+C
Commented by bobhans last updated on 20/Oct/20
typo sir. x^4 (x^2 +4)=x^6 +4x^4
typosir.x4(x2+4)=x6+4x4
Commented by MJS_new last updated on 20/Oct/20
yes, thank you
yes,thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *