Question Number 118834 by bramlexs22 last updated on 20/Oct/20
$$\:\:\int\:\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{3}} }\:{dx}\: \\ $$
Answered by bobhans last updated on 20/Oct/20
$$\:{Solve}\:\int\:\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{3}} }\:{dx}. \\ $$$${solution}. \\ $$$$\:\psi\:=\:\int\:\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{4}\right)}\:{dx}\:=\:\int\:\frac{{x}+{x}^{−\mathrm{3}} }{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx} \\ $$$$\psi=\int\:\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:+\:\int\:\frac{{x}^{−\mathrm{3}} }{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx} \\ $$$$\psi=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{4}\right)+\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$${second}\:{integral}\:\psi_{\mathrm{2}} =\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$${let}\:{x}\:=\:\mathrm{2tan}\:\alpha\: \\ $$$$\psi_{\mathrm{2}} \:=\:\int\:\frac{\mathrm{2sec}\:^{\mathrm{2}} \alpha\:{d}\alpha}{\mathrm{8tan}\:^{\mathrm{3}} \alpha\left(\mathrm{4sec}\:^{\mathrm{2}} \alpha\right)}\:=\:\frac{\mathrm{1}}{\mathrm{16}}\int\:\frac{\mathrm{cos}\:^{\mathrm{2}} \alpha\:{d}\left(\mathrm{sin}\:\alpha\right)}{\mathrm{sin}\:^{\mathrm{3}} \alpha} \\ $$$$\psi_{\mathrm{2}} =\:\int\:\left(\frac{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \alpha}{\mathrm{sin}\:^{\mathrm{3}} \alpha}\right)\:{d}\left(\mathrm{sin}\:\alpha\right)=\:\int\:\left({u}^{−\mathrm{3}} −{u}^{−\mathrm{1}} \right){du} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}{u}^{\mathrm{2}} }−\mathrm{ln}\:\left({u}\right)+\:{c}\:=\:−\frac{\mathrm{1}}{\mathrm{2sin}\:^{\mathrm{2}} {x}}−\mathrm{ln}\:\left(\mathrm{sin}\:{x}\right)\:+\:{c} \\ $$$${Thus}\:\psi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{4}\right)−\mathrm{ln}\:\left(\mathrm{sin}\:{x}\right)−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} {x}\:+\:{c} \\ $$$$\psi=\:\mathrm{ln}\:\left(\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{sin}\:{x}}\right)−\frac{\mathrm{cosec}\:^{\mathrm{2}} {x}}{\mathrm{2}}\:+\:{c}\: \\ $$
Answered by MJS_new last updated on 20/Oct/20
$$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx}= \\ $$$$=\frac{\mathrm{17}}{\mathrm{16}}\int\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{4}}{dx}−\frac{\mathrm{1}}{\mathrm{16}}\int\frac{{dx}}{{x}}+\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{dx}}{{x}^{\mathrm{3}} }= \\ $$$$=\frac{\mathrm{17}}{\mathrm{32}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{4}\right)\:−\frac{\mathrm{1}}{\mathrm{16}}\mathrm{ln}\:\mid{x}\mid\:−\frac{\mathrm{1}}{\mathrm{8}{x}^{\mathrm{2}} }+{C} \\ $$
Commented by bobhans last updated on 20/Oct/20
$${typo}\:{sir}.\:{x}^{\mathrm{4}} \left({x}^{\mathrm{2}} +\mathrm{4}\right)={x}^{\mathrm{6}} +\mathrm{4}{x}^{\mathrm{4}} \\ $$
Commented by MJS_new last updated on 20/Oct/20
$$\mathrm{yes},\:\mathrm{thank}\:\mathrm{you} \\ $$