Question Number 107515 by mohammad17 last updated on 11/Aug/20
$$\int\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{8}} }{dx} \\ $$
Answered by Ar Brandon last updated on 11/Aug/20
$$\mathrm{I}=\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx} \\ $$$$\mathrm{Let}\:\mathrm{x}^{\mathrm{8}} +\mathrm{1}=\mathrm{0}\:\Rightarrow\:\mathrm{x}_{\mathrm{k}} ^{\mathrm{8}} =\mathrm{e}^{\left(\mathrm{2k}+\mathrm{1}\right)\mathrm{i}\pi} \:\Rightarrow\:\mathrm{x}_{\mathrm{k}} =\mathrm{e}^{\left(\frac{\mathrm{2k}+\mathrm{1}}{\mathrm{8}}\right)\mathrm{i}\pi} \mathrm{k}\in\left[\mathrm{0},\mathrm{7}\right] \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{8}} +\mathrm{1}=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\prod}}\left(\mathrm{x}−\mathrm{x}_{\mathrm{k}} \right) \\ $$$$\Rightarrow\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx}=\int\frac{\mathrm{x}^{\mathrm{4}} }{\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\prod}}\left(\mathrm{x}−\mathrm{x}_{\mathrm{k}} \right)}\mathrm{dx}=\int\left\{\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\frac{\mathrm{a}_{\mathrm{k}} }{\mathrm{x}−\mathrm{x}_{\mathrm{k}} }\mathrm{dx}\right\} \\ $$$$\mathrm{a}_{\mathrm{k}} =\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{4}} }{\mathrm{8x}_{\mathrm{k}} ^{\mathrm{7}} }=−\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} }{\mathrm{8}} \\ $$$$\Rightarrow\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx}=−\frac{\mathrm{1}}{\mathrm{8}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\left\{\int\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} }{\mathrm{x}−\mathrm{x}_{\mathrm{k}} }\mathrm{dx}\right\} \\ $$$$\Rightarrow\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx}=−\frac{\mathrm{1}}{\mathrm{8}}\left[\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} \mathrm{ln}\mid\mathrm{x}−\mathrm{x}_{\mathrm{k}} \mid\right]+\mathcal{C},\:\:\mathrm{x}_{\mathrm{k}} =\mathrm{e}^{\left(\frac{\mathrm{2k}+\mathrm{1}}{\mathrm{8}}\right)\mathrm{i}\pi} \\ $$
Commented by mohammad17 last updated on 11/Aug/20
$${thank}\:{you}\:{sir}\:.\:{can}\:{you}\:{solve}\:{by}\:{different}\:{method}\:? \\ $$
Commented by Ar Brandon last updated on 11/Aug/20
Not yet. Do you face difficulties with this ?
Commented by Ar Brandon last updated on 11/Aug/20