Question Number 126879 by bramlexs22 last updated on 25/Dec/20
$$\:\int\:\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{8}} }\:{dx}\:? \\ $$
Answered by Lordose last updated on 25/Dec/20
$$\Omega\:=\:\int^{\:} \frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx}\:=\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \int\mathrm{x}^{\mathrm{4}+\mathrm{8n}} \mathrm{dx} \\ $$$$\Omega\:=\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{5}+\mathrm{8n}} }{\mathrm{5}+\mathrm{8n}} \\ $$$$ \\ $$
Answered by Ar Brandon last updated on 25/Dec/20
$$\mathrm{x}_{\mathrm{k}} ^{\mathrm{8}} +\mathrm{1}=\mathrm{0}\:\Rightarrow\:\mathrm{x}_{\mathrm{k}} =\mathrm{e}^{\frac{\left(\mathrm{2k}+\mathrm{1}\right)\pi}{\mathrm{8}}\mathrm{i}} \\ $$$$\mathrm{x}^{\mathrm{8}} +\mathrm{1}=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\prod}}\left(\mathrm{x}−\mathrm{x}_{\mathrm{k}} \right) \\ $$$$\mathcal{I}=\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx}=\int\frac{\mathrm{x}^{\mathrm{4}} }{\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\prod}}\left(\mathrm{x}−\mathrm{x}_{\mathrm{k}} \right)}\mathrm{dx}=\int\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\frac{\mathrm{a}_{\mathrm{k}} }{\mathrm{x}−\mathrm{x}_{\mathrm{k}} }\mathrm{dx} \\ $$$$\mathrm{a}_{\mathrm{k}} =\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{4}} }{\mathrm{8x}_{\mathrm{k}} ^{\mathrm{7}} }=−\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} }{\mathrm{8}} \\ $$$$\mathcal{I}=−\frac{\mathrm{1}}{\mathrm{8}}\int\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} }{\mathrm{x}−\mathrm{x}_{\mathrm{k}} }\mathrm{dx}=−\frac{\mathrm{1}}{\mathrm{8}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} \mathrm{ln}\mid\mathrm{x}−\mathrm{x}_{\mathrm{k}} \mid+\mathcal{C} \\ $$