Question Number 65480 by ajfour last updated on 30/Jul/19
$${x}^{\mathrm{4}} −\mathrm{15}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{24}=\mathrm{0}\:\:\: \\ $$$${solve}\:{for}\:{x}. \\ $$
Commented by Prithwish sen last updated on 30/Jul/19
$$\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}−\mathrm{1}\right)+\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}−\mathrm{1}\right)−\mathrm{14x}\left(\mathrm{x}−\mathrm{1}\right)−\mathrm{24}\left(\mathrm{x}−\mathrm{1}\right) \\ $$$$=\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} −\mathrm{14x}−\mathrm{24}\right) \\ $$$$=\left(\mathrm{x}−\mathrm{1}\right)\left\{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{2}\right)−\mathrm{x}\left(\mathrm{x}+\mathrm{2}\right)−\mathrm{12}\left(\mathrm{x}−\mathrm{2}\right)\right\} \\ $$$$=\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{x}+\mathrm{3}\right)\left(\mathrm{x}−\mathrm{4}\right) \\ $$