Menu Close

x-4-16x-3-9x-2-256x-256-0-Find-the-values-of-x-




Question Number 184787 by Mastermind last updated on 11/Jan/23
x^4 +16x^3 +9x^2 +256x+256=0    Find the values of x?
$$\mathrm{x}^{\mathrm{4}} +\mathrm{16x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} +\mathrm{256x}+\mathrm{256}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}? \\ $$
Commented by MJS_new last updated on 11/Jan/23
I explained this many times before  x^4 +ax^3 +bx^2 +cx+d=0  (1)  try ±factors of the constant d  if you don′t succeed:  (2)  let x=t−(a/4) to get  t^4 +pt^2 +qt+r=0  we′re trying to find 2 square factors  (t^2 −αt−β)(t^2 +αt−γ)=0  ⇔  t^4 −(α^2 +β+γ)t^2 +α(γ−β)t+βγ=0  by comparing the constants we get   { ((−(α^2 +β+γ)=p)),((α(γ−β)=q)),((βγ=r)) :}  solve (1) and (2) for β and γ  then insert in (3) and transform to get  (α^2 )^3 +j(α^2 )^2 +k(α^2 )+l=0  if this has got at least one nice solution for  α^2  we get nice solutions for t^2 −αt−β=0 and  t^2 +αt−γ=0 and also for x. if there′s no nice  solution for α^2  it′s better to approximate  for x from the given equation.
$$\mathrm{I}\:\mathrm{explained}\:\mathrm{this}\:\mathrm{many}\:\mathrm{times}\:\mathrm{before} \\ $$$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right) \\ $$$$\mathrm{try}\:\pm\mathrm{factors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{constant}\:{d} \\ $$$$\mathrm{if}\:\mathrm{you}\:\mathrm{don}'\mathrm{t}\:\mathrm{succeed}: \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{let}\:{x}={t}−\frac{{a}}{\mathrm{4}}\:\mathrm{to}\:\mathrm{get} \\ $$$${t}^{\mathrm{4}} +{pt}^{\mathrm{2}} +{qt}+{r}=\mathrm{0} \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{trying}\:\mathrm{to}\:\mathrm{find}\:\mathrm{2}\:\mathrm{square}\:\mathrm{factors} \\ $$$$\left({t}^{\mathrm{2}} −\alpha{t}−\beta\right)\left({t}^{\mathrm{2}} +\alpha{t}−\gamma\right)=\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$${t}^{\mathrm{4}} −\left(\alpha^{\mathrm{2}} +\beta+\gamma\right){t}^{\mathrm{2}} +\alpha\left(\gamma−\beta\right){t}+\beta\gamma=\mathrm{0} \\ $$$$\mathrm{by}\:\mathrm{comparing}\:\mathrm{the}\:\mathrm{constants}\:\mathrm{we}\:\mathrm{get} \\ $$$$\begin{cases}{−\left(\alpha^{\mathrm{2}} +\beta+\gamma\right)={p}}\\{\alpha\left(\gamma−\beta\right)={q}}\\{\beta\gamma={r}}\end{cases} \\ $$$$\mathrm{solve}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{for}\:\beta\:\mathrm{and}\:\gamma \\ $$$$\mathrm{then}\:\mathrm{insert}\:\mathrm{in}\:\left(\mathrm{3}\right)\:\mathrm{and}\:\mathrm{transform}\:\mathrm{to}\:\mathrm{get} \\ $$$$\left(\alpha^{\mathrm{2}} \right)^{\mathrm{3}} +{j}\left(\alpha^{\mathrm{2}} \right)^{\mathrm{2}} +{k}\left(\alpha^{\mathrm{2}} \right)+{l}=\mathrm{0} \\ $$$$\mathrm{if}\:\mathrm{this}\:\mathrm{has}\:\mathrm{got}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{nice}\:\mathrm{solution}\:\mathrm{for} \\ $$$$\alpha^{\mathrm{2}} \:\mathrm{we}\:\mathrm{get}\:\mathrm{nice}\:\mathrm{solutions}\:\mathrm{for}\:{t}^{\mathrm{2}} −\alpha{t}−\beta=\mathrm{0}\:\mathrm{and} \\ $$$${t}^{\mathrm{2}} +\alpha{t}−\gamma=\mathrm{0}\:\mathrm{and}\:\mathrm{also}\:\mathrm{for}\:{x}.\:\mathrm{if}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{nice} \\ $$$$\mathrm{solution}\:\mathrm{for}\:\alpha^{\mathrm{2}} \:\mathrm{it}'\mathrm{s}\:\mathrm{better}\:\mathrm{to}\:\mathrm{approximate} \\ $$$$\mathrm{for}\:{x}\:\mathrm{from}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}. \\ $$
Commented by MJS_new last updated on 11/Jan/23
for the given equation we get  x^4 +16x^3 +9x^2 +256x+256=0  x=t−4  t^4 +87t^2 +696t−1392=0  α=(√(87))  β=−4(√(87))  γ=4(√(87))  ...  x_(1, 2) =−4−((√(87))/2)±((√(87+16(√(87))))/2)  x_(3, 4) =−((8−(√(87)))/2)±((√(−87+16(√(87))))/2)i
$$\mathrm{for}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{we}\:\mathrm{get} \\ $$$${x}^{\mathrm{4}} +\mathrm{16}{x}^{\mathrm{3}} +\mathrm{9}{x}^{\mathrm{2}} +\mathrm{256}{x}+\mathrm{256}=\mathrm{0} \\ $$$${x}={t}−\mathrm{4} \\ $$$${t}^{\mathrm{4}} +\mathrm{87}{t}^{\mathrm{2}} +\mathrm{696}{t}−\mathrm{1392}=\mathrm{0} \\ $$$$\alpha=\sqrt{\mathrm{87}} \\ $$$$\beta=−\mathrm{4}\sqrt{\mathrm{87}} \\ $$$$\gamma=\mathrm{4}\sqrt{\mathrm{87}} \\ $$$$… \\ $$$${x}_{\mathrm{1},\:\mathrm{2}} =−\mathrm{4}−\frac{\sqrt{\mathrm{87}}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{87}+\mathrm{16}\sqrt{\mathrm{87}}}}{\mathrm{2}} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} =−\frac{\mathrm{8}−\sqrt{\mathrm{87}}}{\mathrm{2}}\pm\frac{\sqrt{−\mathrm{87}+\mathrm{16}\sqrt{\mathrm{87}}}}{\mathrm{2}}\mathrm{i} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *