Menu Close

x-4-16x-3-9x-2-256x-256-0-Find-the-values-of-x-




Question Number 184787 by Mastermind last updated on 11/Jan/23
x^4 +16x^3 +9x^2 +256x+256=0    Find the values of x?
x4+16x3+9x2+256x+256=0Findthevaluesofx?
Commented by MJS_new last updated on 11/Jan/23
I explained this many times before  x^4 +ax^3 +bx^2 +cx+d=0  (1)  try ±factors of the constant d  if you don′t succeed:  (2)  let x=t−(a/4) to get  t^4 +pt^2 +qt+r=0  we′re trying to find 2 square factors  (t^2 −αt−β)(t^2 +αt−γ)=0  ⇔  t^4 −(α^2 +β+γ)t^2 +α(γ−β)t+βγ=0  by comparing the constants we get   { ((−(α^2 +β+γ)=p)),((α(γ−β)=q)),((βγ=r)) :}  solve (1) and (2) for β and γ  then insert in (3) and transform to get  (α^2 )^3 +j(α^2 )^2 +k(α^2 )+l=0  if this has got at least one nice solution for  α^2  we get nice solutions for t^2 −αt−β=0 and  t^2 +αt−γ=0 and also for x. if there′s no nice  solution for α^2  it′s better to approximate  for x from the given equation.
Iexplainedthismanytimesbeforex4+ax3+bx2+cx+d=0(1)try±factorsoftheconstantdifyoudontsucceed:(2)letx=ta4togett4+pt2+qt+r=0weretryingtofind2squarefactors(t2αtβ)(t2+αtγ)=0t4(α2+β+γ)t2+α(γβ)t+βγ=0bycomparingtheconstantsweget{(α2+β+γ)=pα(γβ)=qβγ=rsolve(1)and(2)forβandγtheninsertin(3)andtransformtoget(α2)3+j(α2)2+k(α2)+l=0ifthishasgotatleastonenicesolutionforα2wegetnicesolutionsfort2αtβ=0andt2+αtγ=0andalsoforx.iftheresnonicesolutionforα2itsbettertoapproximateforxfromthegivenequation.
Commented by MJS_new last updated on 11/Jan/23
for the given equation we get  x^4 +16x^3 +9x^2 +256x+256=0  x=t−4  t^4 +87t^2 +696t−1392=0  α=(√(87))  β=−4(√(87))  γ=4(√(87))  ...  x_(1, 2) =−4−((√(87))/2)±((√(87+16(√(87))))/2)  x_(3, 4) =−((8−(√(87)))/2)±((√(−87+16(√(87))))/2)i
forthegivenequationwegetx4+16x3+9x2+256x+256=0x=t4t4+87t2+696t1392=0α=87β=487γ=487x1,2=4872±87+16872x3,4=8872±87+16872i

Leave a Reply

Your email address will not be published. Required fields are marked *