Menu Close

x-4-48x-2-x-565-0-x-




Question Number 116509 by Khalmohmmad last updated on 04/Oct/20
x^4 −48x^2 +x+565=0   x=?
$$\mathrm{x}^{\mathrm{4}} −\mathrm{48x}^{\mathrm{2}} +\mathrm{x}+\mathrm{565}=\mathrm{0}\: \\ $$$$\mathrm{x}=? \\ $$
Answered by TANMAY PANACEA last updated on 04/Oct/20
f(x)=x^4 −48x^2 +576+x−11  f(x)=(x^2 −24)^2 +x−11  f(0)=576−11>0  f(4)=(−8)^2 −7>0  f(5)=(1)^2 −6<0  so one root    5>x>4  wait...  f(6)=(36−24)^2 +6−11>0  so another root 6>x>5
$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{48}{x}^{\mathrm{2}} +\mathrm{576}+{x}−\mathrm{11} \\ $$$${f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{24}\right)^{\mathrm{2}} +{x}−\mathrm{11} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{576}−\mathrm{11}>\mathrm{0} \\ $$$${f}\left(\mathrm{4}\right)=\left(−\mathrm{8}\right)^{\mathrm{2}} −\mathrm{7}>\mathrm{0} \\ $$$$\boldsymbol{{f}}\left(\mathrm{5}\right)=\left(\mathrm{1}\right)^{\mathrm{2}} −\mathrm{6}<\mathrm{0} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{one}}\:\boldsymbol{{root}}\:\:\:\:\mathrm{5}>\boldsymbol{{x}}>\mathrm{4} \\ $$$$\boldsymbol{{wait}}… \\ $$$${f}\left(\mathrm{6}\right)=\left(\mathrm{36}−\mathrm{24}\right)^{\mathrm{2}} +\mathrm{6}−\mathrm{11}>\mathrm{0} \\ $$$${so}\:{another}\:{root}\:\mathrm{6}>{x}>\mathrm{5} \\ $$
Answered by MJS_new last updated on 04/Oct/20
no useable exact solution  x_1 ≈−5.29497  x_2 ≈−4.47946  x_3 ≈4.63433  x_4 ≈5.14011
$$\mathrm{no}\:\mathrm{useable}\:\mathrm{exact}\:\mathrm{solution} \\ $$$${x}_{\mathrm{1}} \approx−\mathrm{5}.\mathrm{29497} \\ $$$${x}_{\mathrm{2}} \approx−\mathrm{4}.\mathrm{47946} \\ $$$${x}_{\mathrm{3}} \approx\mathrm{4}.\mathrm{63433} \\ $$$${x}_{\mathrm{4}} \approx\mathrm{5}.\mathrm{14011} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *