Question Number 93638 by i jagooll last updated on 14/May/20
$$\int\:\frac{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\:{dx}\:?\: \\ $$
Commented by i jagooll last updated on 14/May/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{both}\: \\ $$
Commented by mathmax by abdo last updated on 14/May/20
$${I}\:=\int\:\:\frac{{x}^{\mathrm{4}} \:+\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}}}{dx}\:\:{changement}\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}}={t}\:{give}\:{x}^{\mathrm{2}} \:={t}^{\mathrm{2}} −\mathrm{4}\:\Rightarrow{xdx}\:={tdt} \\ $$$${I}\:=\int\:\:\frac{\left({t}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \:+\mathrm{4}\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}{{t}}{tdt}\:=\int\left(\:\left({t}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \:+\mathrm{4}\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\right){dt} \\ $$$$=\int\:\left({t}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \:{dt}\:+\mathrm{4}\:\int\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}{dt}\:\:{but} \\ $$$$\int\:\left({t}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{3}} \:{dt}\:=\int\:\:\left({t}^{\mathrm{6}} −\mathrm{3}{t}^{\mathrm{4}} \left(\mathrm{4}\right)+\mathrm{3}{t}^{\mathrm{2}} \left(\mathrm{4}\right)^{\mathrm{2}} −\mathrm{4}^{\mathrm{3}} \right){dt} \\ $$$$=\frac{{t}^{\mathrm{7}} }{\mathrm{7}}\:−\frac{\mathrm{12}}{\mathrm{5}}{t}^{\mathrm{5}} \:+\frac{\mathrm{48}}{\mathrm{3}}\:{t}^{\mathrm{3}} \:−\mathrm{64}\:{t}\:+{c}_{\mathrm{1}} \\ $$$$\int\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}{dt}\:\:=_{{t}\:=\mathrm{2}{chz}} \:\:\int\:\mathrm{2}\:{shz}\:\left(\mathrm{2}{shz}\right){dz}\:=\mathrm{4}\:\int\:{sh}^{\mathrm{2}} {z}\:{dz} \\ $$$$=\mathrm{2}\int\:\left({ch}\left(\mathrm{2}{z}\right)−\mathrm{1}\right){dz}\:={sh}\left(\mathrm{2}{z}\right)−\mathrm{2}{z}\:+{c}_{\mathrm{2}} \\ $$$$=\mathrm{2}{sh}\left({z}\right){ch}\left({z}\right)\:−\mathrm{2}{z}\:+{c}_{\mathrm{2}} \\ $$$$=\mathrm{2}\sqrt{{ch}^{\mathrm{2}} {z}−\mathrm{1}}×\frac{{t}}{\mathrm{2}}\:−\mathrm{2}{argch}\left(\frac{{t}}{\mathrm{2}}\right)\:+{c}_{\mathrm{2}} \\ $$$$={t}\sqrt{\frac{{t}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{1}}\:−\mathrm{2}\:{ln}\left(\frac{{t}}{\mathrm{2}}+\sqrt{\frac{{t}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{1}}\right)\:+{c}_{\mathrm{2}} \Rightarrow \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{7}}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\right)^{\mathrm{7}} −\frac{\mathrm{12}}{\mathrm{5}}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\right)^{\mathrm{5}} \:+\mathrm{16}\left(\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}}\right)^{\mathrm{3}} −\mathrm{64}\sqrt{{x}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$$+\mathrm{2}{t}\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\:\:−\mathrm{2}{ln}\left({t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\right)\:+{C} \\ $$$$ \\ $$
Answered by Ar Brandon last updated on 14/May/20
$$\mathrm{L}=\int\:\frac{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\:\mathrm{d}{x}=\int{x}^{\mathrm{2}} \centerdot\frac{{x}^{\mathrm{2}} +\mathrm{4}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\mathrm{d}{x}=\int{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\mathrm{d}{x}\: \\ $$$${x}=\mathrm{2sinh}\theta\Rightarrow\mathrm{d}{x}=\mathrm{2cosh}\theta\mathrm{d}\theta \\ $$$$\mathrm{L}=\int\mathrm{4sinh}^{\mathrm{2}} \theta\centerdot\sqrt{\mathrm{4sinh}^{\mathrm{2}} \theta+\mathrm{4}}\centerdot\mathrm{2cosh}\theta\mathrm{d}\theta \\ $$$$\Rightarrow\mathrm{L}=\mathrm{4}\int\mathrm{4sinh}^{\mathrm{2}} \theta\mathrm{cosh}^{\mathrm{2}} \theta\mathrm{d}\theta=\mathrm{4}\int\mathrm{sinh}^{\mathrm{2}} \mathrm{2}\theta\mathrm{d}\theta \\ $$$$\Rightarrow\mathrm{L}=\mathrm{2}\int\left(\mathrm{cosh4}\theta−\mathrm{1}\right)=\frac{\mathrm{sinh4}\theta}{\mathrm{2}}−\mathrm{2}\theta+\mathrm{C} \\ $$$$\int\:\frac{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\:{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sinh4sinh}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{2sinh}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{C} \\ $$
Answered by Kunal12588 last updated on 14/May/20
$${I}=\int\frac{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{4}\right)}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}{dx} \\ $$$${x}^{\mathrm{2}} +\mathrm{4}={t} \\ $$$$\Rightarrow{dx}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{t}−\mathrm{4}}}{dt} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\left({t}−\mathrm{4}\right){t}}{\:\sqrt{{t}}\sqrt{{t}−\mathrm{4}}}{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{{t}}\sqrt{{t}−\mathrm{4}}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{{t}^{\mathrm{2}} −\mathrm{4}{t}}\:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{\left({t}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}}\:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{2}}\left({t}−\mathrm{2}\right)\sqrt{{t}^{\mathrm{2}} −\mathrm{4}{t}}−\frac{\mathrm{4}}{\mathrm{2}}{ln}\mid{t}−\mathrm{2}+\sqrt{{t}^{\mathrm{2}} −\mathrm{4}{t}}\mid\right]+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{2}}{x}\left({x}^{\mathrm{2}} +\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}−\mathrm{2}{ln}\mid{x}^{\mathrm{2}} +\mathrm{2}+{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\mid\right]+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}{x}\left({x}^{\mathrm{2}} +\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}−{ln}\mid{x}^{\mathrm{2}} +{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}+\mathrm{2}\mid+{C} \\ $$