Question Number 65271 by ajfour last updated on 27/Jul/19
$${x}^{\mathrm{4}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${solve}\:{for}\:{x}. \\ $$
Answered by ajfour last updated on 29/Jul/19
$${let}\:{x}^{\mathrm{2}} ={px}+{t} \\ $$$$\left({px}+{t}\right)^{\mathrm{2}} +{a}\left({px}+{t}\right)+{bx}+{c}=\mathrm{0} \\ $$$${p}^{\mathrm{2}} \left({px}+{t}\right)+{t}^{\mathrm{2}} +\mathrm{2}{ptx}+{a}\left({px}+{t}\right)+{bx}+{c}=\mathrm{0} \\ $$$$\Rightarrow\:{x}\left({p}^{\mathrm{3}} +\mathrm{2}{pt}+{ap}+{b}\right) \\ $$$$\:\:\:\:\:\:+{t}^{\mathrm{2}} +\left({p}^{\mathrm{2}} +{a}\right){t}+{c}=\mathrm{0}\:\:\: \\ $$$${let}\:{coeff}.\:{of}\:{x}\:{be}\:{zero} \\ $$$$\Rightarrow\:\:\:{t}=−\frac{\left({p}^{\mathrm{3}} +{ap}+{b}\right)}{\mathrm{2}{p}} \\ $$$${also}\:\:{then} \\ $$$$\:\:\:\:\:\:\:\:{t}^{\mathrm{2}} +\left({p}^{\mathrm{2}} +{a}\right){t}+{c}=\mathrm{0} \\ $$$$\:\Rightarrow\:\:\left({p}^{\mathrm{3}} +{ap}+{b}\right)^{\mathrm{2}} \\ $$$$\:−\mathrm{2}{p}\left({p}^{\mathrm{2}} +{a}\right)\left({p}^{\mathrm{3}} +{ap}+{b}\right)+\mathrm{4}{cp}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$${p}^{\mathrm{6}} +\underset{−} {\mathrm{2}{ap}^{\mathrm{4}} }+\underset{−} {\mathrm{2}{bp}^{\mathrm{3}} }+\underset{−} {{a}^{\mathrm{2}} {p}^{\mathrm{2}} }+\underset{−} {\mathrm{2}{abp}}+{b}^{\mathrm{2}} \\ $$$$−\mathrm{2}{p}^{\mathrm{6}} −\underset{−} {\mathrm{2}{ap}^{\mathrm{4}} }−\underset{−} {\mathrm{2}{bp}^{\mathrm{3}} }−\mathrm{2}{ap}^{\mathrm{4}} −\underset{−} {\mathrm{2}}{a}^{\mathrm{2}} {p}^{\mathrm{2}} \\ $$$$−\underset{−} {\mathrm{2}{abp}}+\mathrm{4}{cp}^{\mathrm{2}} =\mathrm{0} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${p}^{\mathrm{6}} +\mathrm{2}{ap}^{\mathrm{4}} +\left({a}^{\mathrm{2}} −\mathrm{4}{c}\right){p}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({its}\:{a}\:{cubic}\:{in}\:{p}^{\mathrm{2}} \right) \\ $$$${Now}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{t}=−\frac{\left({p}^{\mathrm{3}} +{ap}+{b}\right)}{\mathrm{2}{p}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} −{px}−{t}=\mathrm{0} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\blacksquare \\ $$