Question Number 50825 by behi83417@gmail.com last updated on 20/Dec/18
$$\boldsymbol{\mathrm{x}}^{\mathrm{4}} =\boldsymbol{\mathrm{ax}}^{\mathrm{2}} +\boldsymbol{\mathrm{by}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{y}}^{\mathrm{4}} =\boldsymbol{\mathrm{bx}}^{\mathrm{2}} +\boldsymbol{\mathrm{ay}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\:\boldsymbol{\mathrm{y}}.\:\left[\boldsymbol{\mathrm{a}}\:,\boldsymbol{\mathrm{b}}\in\:\boldsymbol{\mathrm{R}};\:\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}}\neq\mathrm{0}\right] \\ $$
Answered by mr W last updated on 21/Dec/18
$${x}={y}=\mathrm{0}\:{is}\:{a}\:{solution}. \\ $$$$ \\ $$$${let}\:{X}={x}^{\mathrm{2}} ,\:{Y}={y}^{\mathrm{2}} \\ $$$${X}^{\mathrm{2}} ={aX}+{bY} \\ $$$${Y}^{\mathrm{2}} ={bX}+{aY} \\ $$$$\left({X}+{Y}\right)^{\mathrm{2}} −\mathrm{2}{XY}=\left({a}+{b}\right)\left({X}+{Y}\right) \\ $$$$\left({XY}\right)^{\mathrm{2}} ={ab}\left({X}^{\mathrm{2}} +{Y}^{\mathrm{2}} \right)+\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){XY} \\ $$$$\left({XY}\right)^{\mathrm{2}} ={ab}\left({X}^{\mathrm{2}} +{Y}^{\mathrm{2}} +\mathrm{2}{XY}\right)+\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\right){XY} \\ $$$$\left({XY}\right)^{\mathrm{2}} ={ab}\left({X}+{Y}\right)^{\mathrm{2}} +\left({a}−{b}\right)^{\mathrm{2}} {XY} \\ $$$${letu}={X}+{Y},\:{v}={XY} \\ $$$${u}^{\mathrm{2}} −\left({a}+{b}\right){u}−\mathrm{2}{v}=\mathrm{0} \\ $$$$\Rightarrow{v}=\frac{\left[{u}−\left({a}+{b}\right)\right]{u}}{\mathrm{2}} \\ $$$${abu}^{\mathrm{2}} −{v}^{\mathrm{2}} +\left({a}−{b}\right)^{\mathrm{2}} {v}=\mathrm{0} \\ $$$${abu}^{\mathrm{2}} −\left[\frac{{u}^{\mathrm{2}} −\left({a}+{b}\right){u}}{\mathrm{2}}\right]^{\mathrm{2}} +\left({a}−{b}\right)^{\mathrm{2}} \frac{{u}^{\mathrm{2}} −\left({a}+{b}\right){u}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{4}{abu}^{\mathrm{2}} −\left[{u}^{\mathrm{2}} −\left({a}+{b}\right){u}\right]^{\mathrm{2}} +\mathrm{2}\left({a}−{b}\right)^{\mathrm{2}} \left[{u}^{\mathrm{2}} −\left({a}+{b}\right){u}\right]=\mathrm{0} \\ $$$${u}\neq\mathrm{0}\:\left({u}=\mathrm{0}\:\Rightarrow{x}={y}=\mathrm{0}\right) \\ $$$$\mathrm{4}{abu}−{u}^{\mathrm{2}} +\mathrm{2}\left({a}+{b}\right){u}−\left({a}+{b}\right)^{\mathrm{2}} +\mathrm{2}\left({a}−{b}\right)^{\mathrm{2}} {u}−\mathrm{2}\left({a}−{b}\right)^{\mathrm{2}} \left({a}+{b}\right)=\mathrm{0} \\ $$$${u}^{\mathrm{2}} −\mathrm{2}\left({a}+{b}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){u}+\left[{a}+{b}+\mathrm{2}\left({a}−{b}\right)^{\mathrm{2}} \right]\left({a}+{b}\right)=\mathrm{0} \\ $$$$\Rightarrow{u}=\left({a}+{b}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\pm\sqrt{\left({a}+{b}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\left({a}+{b}\right)\left[{a}+{b}+\mathrm{2}\left({a}−{b}\right)^{\mathrm{2}} \right]} \\ $$$$\Rightarrow{v}=\frac{\left[{u}−\left({a}+{b}\right)\right]{u}}{\mathrm{2}} \\ $$$${X}+{Y}={u} \\ $$$${XY}={v} \\ $$$$\Rightarrow{X}\:{and}\:{Y}\:{are}\:{roots}\:{of} \\ $$$${t}^{\mathrm{2}} −{ut}+{v}=\mathrm{0} \\ $$$$\Rightarrow{X},{Y}=\frac{{u}\pm\sqrt{{u}^{\mathrm{2}} −\mathrm{4}{v}}}{\mathrm{2}} \\ $$$$\Rightarrow{x},{y}=\pm\sqrt{\frac{{u}\pm\sqrt{{u}^{\mathrm{2}} −\mathrm{4}{v}}}{\mathrm{2}}} \\ $$
Commented by behi83417@gmail.com last updated on 21/Dec/18
$${thank}\:{you}\:{so}\:{much}\:{dear}\:{master}. \\ $$$${perfect}! \\ $$