Menu Close

x-4-bx-2-cx-d-0-let-cx-m-px-2-x-4-2x-4-b-p-x-2-m-d-0-x-2-b-p-4-b-p-4-2-m-d-2-p-b-x-2-2cx-m-d-0-x-c-p-b-c-p-b-2-m-d-p-b-b-2-p-2-




Question Number 156404 by ajfour last updated on 10/Oct/21
  x^4 +bx^2 +cx+d=0  let  cx=m+px^2 +x^4   ⇒  2x^4 +(b+p)x^2 +m+d=0  x^2 =−(((b+p)/4))±(√((((b+p)/4))^2 −(((m+d)/2))))  (p−b)x^2 −2cx+m−d=0  x=(c/(p−b))±(√(((c/(p−b)))^2 −(((m−d)/(p−b)))))  ⇒  (((b^2 −p^2 ))/4)±(√(((b^2 −p^2 )^2 −8(p−b)^2 (m+d))/(16)))  +((2c^2 )/(b−p))∓(√((4c^4 −4c^2 (p−b)(m−d))/((p−b)^2 )))      +m−d=0  Just if  m=d  ⇒  (((b^2 −p^2 ))/4)±(√(((b^2 −p^2 )^2 −16d(p−b))/(16)))  +((4c^2 )/(b−p))=0  ⇒  (((b^2 −p^2 )/4)+((4c^2 )/(b−p)))^2 +d(p−b)=(((b^2 −p^2 )^2 )/(16))  ⇒ ((16c^4 )/((b−p)^2 ))+(d+2c^2 )(b+p)=0  let  b−p=z  z^2 (2b−z)=−((16c^4 )/(2c^2 +d))  z^3 −2bz^2 −k=0    (k>0)  if b=−1 , d=0, c→−c  z^3 +2z^2 −8c^2 =0  let  z=((2c)/t)  8c^3 +8c^2 t−8c^2 t^3 =0  ⇒  t^3 −t=c  back to square one.
x4+bx2+cx+d=0letcx=m+px2+x42x4+(b+p)x2+m+d=0x2=(b+p4)±(b+p4)2(m+d2)(pb)x22cx+md=0x=cpb±(cpb)2(mdpb)(b2p2)4±(b2p2)28(pb)2(m+d)16+2c2bp4c44c2(pb)(md)(pb)2+md=0Justifm=d(b2p2)4±(b2p2)216d(pb)16+4c2bp=0(b2p24+4c2bp)2+d(pb)=(b2p2)21616c4(bp)2+(d+2c2)(b+p)=0letbp=zz2(2bz)=16c42c2+dz32bz2k=0(k>0)ifb=1,d=0,ccz3+2z28c2=0letz=2ct8c3+8c2t8c2t3=0t3t=cbacktosquareone.
Commented by Tawa11 last updated on 10/Oct/21
Sir, I thought you got one formula that work for power 4 already.  You want to get another one?
Sir,Ithoughtyougotoneformulathatworkforpower4already.Youwanttogetanotherone?
Commented by ajfour last updated on 11/Oct/21
I havent yet derived a very  genersl one that doesnt need  to adopt imaginary numbers  and inverse trigonometry.
Ihaventyetderivedaverygenerslonethatdoesntneedtoadoptimaginarynumbersandinversetrigonometry.
Commented by Tawa11 last updated on 11/Oct/21
Ohh. Altight sir. God will help you more.
Ohh.Altightsir.Godwillhelpyoumore.

Leave a Reply

Your email address will not be published. Required fields are marked *