Menu Close

x-4-c-3-x-3-c-2-x-2-c-1-x-c-0-0-for-c-n-R-this-can-have-4-unique-zeros-R-2-unique-zeros-1-double-zero-R-2-double-zeros-R-1-triple-1-unique-zeros-R-1-fourfold-zero-R-2-unique-zeros-R-1




Question Number 152625 by Dandelion last updated on 30/Aug/21
x^4 +c_3 x^3 +c_2 x^2 +c_1 x+c_0 =0  for c_n ∈R this can have  4 unique zeros ∈R  2 unique zeros + 1 double zero ∈R  2 double zeros ∈R  1 triple + 1 unique zeros ∈R  1 fourfold zero ∈R  2 unique zeros ∈R + 1 pair of complex zeros  1 double zero ∈R + 1 pair of complex zeros  2 pairs of complex zeros  2 double imaginary zeros    for given c_n ; can we decide which case we  have without solving?
x4+c3x3+c2x2+c1x+c0=0forcnRthiscanhave4uniquezerosR2uniquezeros+1doublezeroR2doublezerosR1triple+1uniquezerosR1fourfoldzeroR2uniquezerosR+1pairofcomplexzeros1doublezeroR+1pairofcomplexzeros2pairsofcomplexzeros2doubleimaginaryzerosforgivencn;canwedecidewhichcasewehavewithoutsolving?
Commented by Dandelion last updated on 30/Aug/21
...is there a D (or Δ) similar to polynomes  of 2nd and 3rd degree?
isthereaD(orΔ)similartopolynomesof2ndand3rddegree?
Commented by MJS_new last updated on 31/Aug/21
it′s a bit complicated. I′ll post the answer  later...
itsabitcomplicated.Illposttheanswerlater
Answered by MJS_new last updated on 02/Sep/21
x^4 +c_3 x^3 +c_2 x^2 +c_1 x+c_0 =0  1. let x=t−(c_3 /4) and rename the new constants  ⇒  t^4 +pt^2 +qt+r=0    D_1 =16p^4 r−4p^3 q^2 −128p^2 r^2 +144pq^2 r−27q^4 +256r^3   D_2 =p^2 +12r  D_3 =−p^2 +4r    (1) D_1 <0  ⇒ 2 unique real + 1 pair of conjugated complex solutions    (2) D_1 >0∧p<0∧D_3 <0  ⇒ 4 unique real solutions    (3) D_1 >0∧(p>0∨D_3 >0)  ⇒ 2 pairs of conjugated complex solutions    (4) D_1 =0∧p<0∧D_3 <0∧D_2 ≠0  ⇒ 1 real double + 2 unique real solutions    (5) D_1 =0∧(D_3 >0∨p>0∧(D_3 ≠0∨q≠0))  ⇒ 1 real double + 1 pair of conjugated complex solutions    (6) D_1 =0∧D_2 =0∧D_3 ≠0  ⇒ 1 real triple + 1 unique real solutions    (7) D_1 =0∧D_3 =0∧p<0  ⇒ 2 real double solutions    (8) D_1 =0∧D_3 =0∧p>0∧q=0  ⇒ 2 imaginary double solutions    (9) D_1 =0∧D_2 =0  ⇒ 1 real fourfold solution
x4+c3x3+c2x2+c1x+c0=01.letx=tc34andrenamethenewconstantst4+pt2+qt+r=0D1=16p4r4p3q2128p2r2+144pq2r27q4+256r3D2=p2+12rD3=p2+4r(1)D1<02uniquereal+1pairofconjugatedcomplexsolutions(2)D1>0p<0D3<04uniquerealsolutions(3)D1>0(p>0D3>0)2pairsofconjugatedcomplexsolutions(4)D1=0p<0D3<0D201realdouble+2uniquerealsolutions(5)D1=0(D3>0p>0(D30q0))1realdouble+1pairofconjugatedcomplexsolutions(6)D1=0D2=0D301realtriple+1uniquerealsolutions(7)D1=0D3=0p<02realdoublesolutions(8)D1=0D3=0p>0q=02imaginarydoublesolutions(9)D1=0D2=01realfourfoldsolution
Commented by Tawa11 last updated on 02/Sep/21
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *