Menu Close

x-4-e-x-dx-x-4-4x-3-12x-2-24x-24-72e-x-2-




Question Number 144359 by mathdanisur last updated on 24/Jun/21
∫ ((x^4 e^x  dx)/((x^4 +4x^3 +12x^2 +24x+24+72e^x )^2 )) = ?
$$\int\:\frac{{x}^{\mathrm{4}} {e}^{{x}} \:{dx}}{\left({x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} +\mathrm{12}{x}^{\mathrm{2}} +\mathrm{24}{x}+\mathrm{24}+\mathrm{72}{e}^{{x}} \right)^{\mathrm{2}} }\:=\:? \\ $$
Answered by mitica last updated on 24/Jun/21
f(x)=x^4 +4x^3 +12x^2 +24x+24+72e^x   f′(x)=4x^3 +12x^2 +24x+24+72e^x   f(x)−f′(x)=x^4   ∫((f(x)−f′(x))/(f^2 (x)))e^x dx=∫(e^x /(f(x)))dx+∫((1/(f(x))))′e^x =  ∫(e^x /(f(x)))+e^x ∙(1/(f(x)))−∫(e^x /(f(x)))dx=(e^x /(f(x)))+c
$${f}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} +\mathrm{12}{x}^{\mathrm{2}} +\mathrm{24}{x}+\mathrm{24}+\mathrm{72}{e}^{{x}} \\ $$$${f}'\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} +\mathrm{12}{x}^{\mathrm{2}} +\mathrm{24}{x}+\mathrm{24}+\mathrm{72}{e}^{{x}} \\ $$$${f}\left({x}\right)−{f}'\left({x}\right)={x}^{\mathrm{4}} \\ $$$$\int\frac{{f}\left({x}\right)−{f}'\left({x}\right)}{{f}^{\mathrm{2}} \left({x}\right)}{e}^{{x}} {dx}=\int\frac{{e}^{{x}} }{{f}\left({x}\right)}{dx}+\int\left(\frac{\mathrm{1}}{{f}\left({x}\right)}\right)'{e}^{{x}} = \\ $$$$\int\frac{{e}^{{x}} }{{f}\left({x}\right)}+{e}^{{x}} \centerdot\frac{\mathrm{1}}{{f}\left({x}\right)}−\int\frac{{e}^{{x}} }{{f}\left({x}\right)}{dx}=\frac{{e}^{{x}} }{{f}\left({x}\right)}+{c} \\ $$
Commented by mathdanisur last updated on 24/Jun/21
Thanks Sir, answer: x^4 .?
$${Thanks}\:{Sir},\:{answer}:\:{x}^{\mathrm{4}} .? \\ $$
Commented by mathdanisur last updated on 24/Jun/21
alot perfect solution thank you Sir
$${alot}\:{perfect}\:{solution}\:{thank}\:{you}\:{Sir} \\ $$
Commented by mitica last updated on 24/Jun/21
(e^x /(f(x)))
$$\frac{{e}^{{x}} }{{f}\left({x}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *