Menu Close

x-4-x-1-4-x-5-dx-




Question Number 128542 by bramlexs22 last updated on 08/Jan/21
 ∫ (((x^4 −x)^(1/4) )/x^5 ) dx =?
$$\:\int\:\frac{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{x}\right)^{\mathrm{1}/\mathrm{4}} }{\mathrm{x}^{\mathrm{5}} }\:\mathrm{dx}\:=? \\ $$
Answered by liberty last updated on 08/Jan/21
 γ=∫ ((x(1−x^(−3) )^(1/4) )/x^5 ) dx    γ=∫x^(−4) (1−x^(−3) )^(1/4)  dx    let z =1−x^(−3)  ⇒dz = 3x^(−4)  dx    x^(−4)  dx = (1/3)dz ; γ=(1/3)∫ z^(1/4)  dz   γ=(4/(15))(1−x^(−3) )^(5/4) +C = (4/(15))(((x^3 −1)/x^3 ))^(5/4) +c
$$\:\gamma=\int\:\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{−\mathrm{3}} \right)^{\mathrm{1}/\mathrm{4}} }{\mathrm{x}^{\mathrm{5}} }\:\mathrm{dx}\: \\ $$$$\:\gamma=\int\mathrm{x}^{−\mathrm{4}} \left(\mathrm{1}−\mathrm{x}^{−\mathrm{3}} \right)^{\mathrm{1}/\mathrm{4}} \:\mathrm{dx}\: \\ $$$$\:\mathrm{let}\:\mathrm{z}\:=\mathrm{1}−\mathrm{x}^{−\mathrm{3}} \:\Rightarrow\mathrm{dz}\:=\:\mathrm{3x}^{−\mathrm{4}} \:\mathrm{dx}\: \\ $$$$\:\mathrm{x}^{−\mathrm{4}} \:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{dz}\:;\:\gamma=\frac{\mathrm{1}}{\mathrm{3}}\int\:\mathrm{z}^{\mathrm{1}/\mathrm{4}} \:\mathrm{dz}\: \\ $$$$\gamma=\frac{\mathrm{4}}{\mathrm{15}}\left(\mathrm{1}−\mathrm{x}^{−\mathrm{3}} \right)^{\mathrm{5}/\mathrm{4}} +\mathrm{C}\:=\:\frac{\mathrm{4}}{\mathrm{15}}\left(\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)^{\mathrm{5}/\mathrm{4}} +\mathrm{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *