Menu Close

x-4-x-1-gt-4x-5-




Question Number 180569 by SAMIRA last updated on 13/Nov/22
(√(x+4)) − (√(x−1)) > (√(4x+5))
x+4x1>4x+5
Commented by Frix last updated on 14/Nov/22
false.  the inequality is defined for x≥1  but for x≥0: (√(x+4))<(√(4x+5))  ⇒  for x≥1 (√(x+4))<(√(4x+5))∧(√(x−1))≥0  ⇒ (√(x+4))−(√(x−1))<(√(4x+5))
false.theinequalityisdefinedforx1butforx0:x+4<4x+5forx1x+4<4x+5x10x+4x1<4x+5
Answered by Acem last updated on 14/Nov/22
f(x)= (√(4x+5))  ; x∈ [−(5/4), +∞[   c_1 (−1.25, 0), c_2 (0, (√5))    g(x)= (√(x+4)) − (√(x−1)) ; x∈ [1, +∞[    c_3 (1, (√5)) ,  lim_(x→+∞)  g(x)= lim_(x→+∞)  ((((√(x+4)) − (√(x−1)))((√(x+4)) + (√(x−1))))/( (√(x+4)) + (√(x−1))))    = lim_(x→+∞)  (5/( (√(x+4)) + (√(x−1)))) =0   ⇒ for x∈ [1, +∞[  : g(x) ∈ [(√5) , 0[                                        & f(x) ∈ [3, +∞[   ⇒ (√(4x+5))  is always bigger than g(x) ∀x∈ [1, +∞[  Then the statement   (√(x+4)) − (√(x−1)) > (√(4x+5))   is wrong or x∈ ∅
f(x)=4x+5;x[54,+[c1(1.25,0),c2(0,5)g(x)=x+4x1;x[1,+[c3(1,5),limx+g(x)=limx+(x+4x1)(x+4+x1)x+4+x1=limx+5x+4+x1=0forx[1,+[:g(x)[5,0[&f(x)[3,+[4x+5isalwaysbiggerthang(x)x[1,+[Thenthestatementx+4x1>4x+5iswrongorx
Commented by Acem last updated on 13/Nov/22

Leave a Reply

Your email address will not be published. Required fields are marked *