Menu Close

x-4-x-2-cx-x-2-1-2-2-cx-1-4-let-x-2-1-2-t-t-2-1-4-2-c-2-t-1-2-now-let-t-2-1-4-z-z-2-c-2-2-2-c-4-z-1-4-z-2-c-2-2-p-p-2-c-4-4-2-c-8-p




Question Number 164341 by ajfour last updated on 16/Jan/22
  x^4 =x^2 +cx  (x^2 −(1/2))^2 =cx+(1/4)  let    x^2 −(1/2)=t   ⇒  (t^2 −(1/4))^2 =c^2 (t+(1/2))  now  let   t^2 −(1/4)=z   ⇒  (z^2 −(c^2 /2))^2 =c^4 (z+(1/4))  z^2 −(c^2 /2)=p  ⇒  (p^2 −(c^4 /4))^2 =c^8 (p+(c^2 /2))  ⇒   p^4 −((c^4 p^2 )/2)−c^8 p+(c^8 /(16))−(c^(10) /2)=0  p^4 −Ap^2 −Bp−λ=0  (p^2 +sp+h)(p^2 −sp−(λ/h))=0  h−(λ/h)=s^2 −A  s(h+(λ/h))=B  (B^2 /s^2 )−(s^2 −A)^2 =4λ  (s^2 −A)^3 +A(s^2 −A)^2 +4λ(s^2 −A)           +4λA−B^2 =0  m^3 +Am^2 +4λm+(4λA−B^2 )=0  let   m=w−(A/3)   ⇒  w^3 +(4λ−(A^2 /3))w+((2A^3 )/(27))+((8λA)/3)−B^2 =0  4λ−(A^2 /3)=2c^(10) −(c^8 /4)−(c^8 /(12))                  =2c^8 (c^2 −(1/6))
x4=x2+cx(x212)2=cx+14letx212=t(t214)2=c2(t+12)nowlett214=z(z2c22)2=c4(z+14)z2c22=p(p2c44)2=c8(p+c22)p4c4p22c8p+c816c102=0p4Ap2Bpλ=0(p2+sp+h)(p2spλh)=0hλh=s2As(h+λh)=BB2s2(s2A)2=4λ(s2A)3+A(s2A)2+4λ(s2A)+4λAB2=0m3+Am2+4λm+(4λAB2)=0letm=wA3w3+(4λA23)w+2A327+8λA3B2=04λA23=2c10c84c812=2c8(c216)
Commented by Tawa11 last updated on 16/Jan/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *