Menu Close

x-4x-16x-64x-4-2019-x-3-x-1-x-




Question Number 128850 by ruwedkabeh last updated on 10/Jan/21
(√(x+(√(4x+(√(16x+(√(64x+...+(√(4^(2019) x+3))))))))))−(√x)=1  x=?
$$\sqrt{{x}+\sqrt{\mathrm{4}{x}+\sqrt{\mathrm{16}{x}+\sqrt{\mathrm{64}{x}+…+\sqrt{\mathrm{4}^{\mathrm{2019}} {x}+\mathrm{3}}}}}}−\sqrt{{x}}=\mathrm{1} \\ $$$${x}=? \\ $$
Answered by mindispower last updated on 10/Jan/21
⇒(√(4x+......+(√(4^(2009) x+3))))=1+2(√x)  ⇒4x+(√(16x+......+(√(4^(2009) x+3))))=1+4(√x)+4x=1+2^2 (√x)+4x  (√(16x+....(√(4^(2009) x+3))))=1+4(√x).  ..try to find last relation using 2^n ,4^m
$$\Rightarrow\sqrt{\mathrm{4}{x}+……+\sqrt{\mathrm{4}^{\mathrm{2009}} {x}+\mathrm{3}}}=\mathrm{1}+\mathrm{2}\sqrt{{x}} \\ $$$$\Rightarrow\mathrm{4}{x}+\sqrt{\mathrm{16}{x}+……+\sqrt{\mathrm{4}^{\mathrm{2009}} {x}+\mathrm{3}}}=\mathrm{1}+\mathrm{4}\sqrt{{x}}+\mathrm{4}{x}=\mathrm{1}+\mathrm{2}^{\mathrm{2}} \sqrt{{x}}+\mathrm{4}{x} \\ $$$$\sqrt{\mathrm{16}{x}+….\sqrt{\mathrm{4}^{\mathrm{2009}} {x}+\mathrm{3}}}=\mathrm{1}+\mathrm{4}\sqrt{{x}}. \\ $$$$..{try}\:{to}\:{find}\:{last}\:{relation}\:{using}\:\mathrm{2}^{{n}} ,\mathrm{4}^{{m}} \\ $$
Commented by ruwedkabeh last updated on 11/Jan/21
thank you. i got (1/4^(2019) )
$${thank}\:{you}.\:{i}\:{got}\:\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2019}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *