Menu Close

x-5-2-x-3-dx-




Question Number 16061 by Joel577 last updated on 17/Jun/17
∫ x^5 (√(2 − x^3 )) dx
$$\int\:{x}^{\mathrm{5}} \sqrt{\mathrm{2}\:−\:{x}^{\mathrm{3}} }\:{dx} \\ $$
Answered by Tinkutara last updated on 17/Jun/17
Let 2 − x^3  = t  Then −3x^2  dx = dt  ∴ ((−1)/3) ∫x^3  [−3x^2  (√(2 − x^3 )) dx]  = (1/3) ∫(t − 2)(√t) dt  = (1/3) ∫[(√t^3 ) − 2(√t)] dt  Now simply integrate and substitute  for t.
$$\mathrm{Let}\:\mathrm{2}\:−\:{x}^{\mathrm{3}} \:=\:{t} \\ $$$$\mathrm{Then}\:−\mathrm{3}{x}^{\mathrm{2}} \:{dx}\:=\:{dt} \\ $$$$\therefore\:\frac{−\mathrm{1}}{\mathrm{3}}\:\int{x}^{\mathrm{3}} \:\left[−\mathrm{3}{x}^{\mathrm{2}} \:\sqrt{\mathrm{2}\:−\:{x}^{\mathrm{3}} }\:{dx}\right] \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\:\int\left({t}\:−\:\mathrm{2}\right)\sqrt{{t}}\:{dt} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\:\int\left[\sqrt{{t}^{\mathrm{3}} }\:−\:\mathrm{2}\sqrt{{t}}\right]\:{dt} \\ $$$$\mathrm{Now}\:\mathrm{simply}\:\mathrm{integrate}\:\mathrm{and}\:\mathrm{substitute} \\ $$$$\mathrm{for}\:{t}. \\ $$
Commented by Joel577 last updated on 18/Jun/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *