Menu Close

x-5-4x-4-6x-3-8x-32-0-Find-at-least-one-root-




Question Number 55198 by ajfour last updated on 19/Feb/19
x^5 −4x^4 +6x^3 +8x−32=0  Find at least one root.
$${x}^{\mathrm{5}} −\mathrm{4}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{3}} +\mathrm{8}{x}−\mathrm{32}=\mathrm{0} \\ $$$${Find}\:{at}\:{least}\:{one}\:{root}. \\ $$
Commented by arvinddayama00@gmail.com last updated on 19/Feb/19
all velue of x=?
$${all}\:{velue}\:{of}\:{x}=? \\ $$
Answered by rahul 19 last updated on 19/Feb/19
x=2!
$${x}=\mathrm{2}! \\ $$
Commented by rahul 19 last updated on 19/Feb/19
simply by hit & trial . ����
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Feb/19
x^5 +6x^3 +8x=4x^4 +32  right hand side x^(even power)  so right hand  side is always +ve  now left hand side should be +ve  so x can not be less than zero  so x≮0  now    (x^5 +6x^3 +8x)−(4x^4 +32)=0  f(x)=(x^5 +6x^3 +8x)−(4x^4 +32)  f(x)<0 at x=0  f(x)<0 at x=1  so no root in between(0,1)    now checking  between 1 and 2  f(2)=32+48+16−64−32=0  so x=2 is a root..  f(1)=1+6+8−4−32=−21  now gradually we increase the value of x  such as 1.1,1.2,...and observe change of sign  f(x)=y=(x^5 +6x^3 +8x)−(4x^4 +32)  (dy/dx)=5x^4 +18x^2 +8−16x^3   ((△y)/(△x))≈(dy/dx)  △y=(dy/dx)×△x=(5+18+8−16)×0.1=1.5  so f(1.1)=f(1)+△y=−21+1.5=−19.5  f(2.1)=f(2)+△y=0+1.5=1.5>0  f(3)=3^5 +6×3^3 +8×3−4×3^4 −32  =3^4 (3−4)+6×27−8  =−81+162−8>0  so no root between 2.1 and 3  ...  f(4)=4^5 +6×4^3 +32−4×4^4 −32>0  so no root between 3 and 4  now...  f(x)=x^5 +6x^3 +8x−(4x^4 +32)  f(x)=g(x)−h(x)  (df/dx)=(dg/dx)−(dh/dx)=(5x^4 +18x^2 +8)−(16x^3 )  =x^3 (5x−16)+18x^2 +8..  now look when x>3.2    (df/dx)>0  so there will be no sign change when x>3.2  so this eqn has only one root that is  x=2...pls pay your kind attention...
$${x}^{\mathrm{5}} +\mathrm{6}{x}^{\mathrm{3}} +\mathrm{8}{x}=\mathrm{4}{x}^{\mathrm{4}} +\mathrm{32} \\ $$$${right}\:{hand}\:{side}\:{x}^{{even}\:{power}} \:{so}\:{right}\:{hand} \\ $$$${side}\:{is}\:{always}\:+{ve} \\ $$$${now}\:{left}\:{hand}\:{side}\:{should}\:{be}\:+{ve} \\ $$$${so}\:{x}\:{can}\:{not}\:{be}\:{less}\:{than}\:{zero} \\ $$$${so}\:{x}\nless\mathrm{0} \\ $$$${now}\:\: \\ $$$$\left({x}^{\mathrm{5}} +\mathrm{6}{x}^{\mathrm{3}} +\mathrm{8}{x}\right)−\left(\mathrm{4}{x}^{\mathrm{4}} +\mathrm{32}\right)=\mathrm{0} \\ $$$${f}\left({x}\right)=\left({x}^{\mathrm{5}} +\mathrm{6}{x}^{\mathrm{3}} +\mathrm{8}{x}\right)−\left(\mathrm{4}{x}^{\mathrm{4}} +\mathrm{32}\right) \\ $$$${f}\left({x}\right)<\mathrm{0}\:{at}\:{x}=\mathrm{0} \\ $$$${f}\left({x}\right)<\mathrm{0}\:{at}\:{x}=\mathrm{1} \\ $$$${so}\:{no}\:{root}\:{in}\:{between}\left(\mathrm{0},\mathrm{1}\right) \\ $$$$ \\ $$$${now}\:{checking}\:\:{between}\:\mathrm{1}\:{and}\:\mathrm{2} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{32}+\mathrm{48}+\mathrm{16}−\mathrm{64}−\mathrm{32}=\mathrm{0} \\ $$$${so}\:{x}=\mathrm{2}\:{is}\:{a}\:{root}.. \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}+\mathrm{6}+\mathrm{8}−\mathrm{4}−\mathrm{32}=−\mathrm{21} \\ $$$${now}\:{gradually}\:{we}\:{increase}\:{the}\:{value}\:{of}\:{x} \\ $$$${such}\:{as}\:\mathrm{1}.\mathrm{1},\mathrm{1}.\mathrm{2},…{and}\:{observe}\:{change}\:{of}\:{sign} \\ $$$${f}\left({x}\right)={y}=\left({x}^{\mathrm{5}} +\mathrm{6}{x}^{\mathrm{3}} +\mathrm{8}{x}\right)−\left(\mathrm{4}{x}^{\mathrm{4}} +\mathrm{32}\right) \\ $$$$\frac{{dy}}{{dx}}=\mathrm{5}{x}^{\mathrm{4}} +\mathrm{18}{x}^{\mathrm{2}} +\mathrm{8}−\mathrm{16}{x}^{\mathrm{3}} \\ $$$$\frac{\bigtriangleup{y}}{\bigtriangleup{x}}\approx\frac{{dy}}{{dx}} \\ $$$$\bigtriangleup{y}=\frac{{dy}}{{dx}}×\bigtriangleup{x}=\left(\mathrm{5}+\mathrm{18}+\mathrm{8}−\mathrm{16}\right)×\mathrm{0}.\mathrm{1}=\mathrm{1}.\mathrm{5} \\ $$$${so}\:{f}\left(\mathrm{1}.\mathrm{1}\right)={f}\left(\mathrm{1}\right)+\bigtriangleup{y}=−\mathrm{21}+\mathrm{1}.\mathrm{5}=−\mathrm{19}.\mathrm{5} \\ $$$${f}\left(\mathrm{2}.\mathrm{1}\right)={f}\left(\mathrm{2}\right)+\bigtriangleup{y}=\mathrm{0}+\mathrm{1}.\mathrm{5}=\mathrm{1}.\mathrm{5}>\mathrm{0} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{3}^{\mathrm{5}} +\mathrm{6}×\mathrm{3}^{\mathrm{3}} +\mathrm{8}×\mathrm{3}−\mathrm{4}×\mathrm{3}^{\mathrm{4}} −\mathrm{32} \\ $$$$=\mathrm{3}^{\mathrm{4}} \left(\mathrm{3}−\mathrm{4}\right)+\mathrm{6}×\mathrm{27}−\mathrm{8} \\ $$$$=−\mathrm{81}+\mathrm{162}−\mathrm{8}>\mathrm{0} \\ $$$${so}\:{no}\:{root}\:{between}\:\mathrm{2}.\mathrm{1}\:{and}\:\mathrm{3} \\ $$$$… \\ $$$${f}\left(\mathrm{4}\right)=\mathrm{4}^{\mathrm{5}} +\mathrm{6}×\mathrm{4}^{\mathrm{3}} +\mathrm{32}−\mathrm{4}×\mathrm{4}^{\mathrm{4}} −\mathrm{32}>\mathrm{0} \\ $$$${so}\:{no}\:{root}\:{between}\:\mathrm{3}\:{and}\:\mathrm{4} \\ $$$${now}… \\ $$$${f}\left({x}\right)={x}^{\mathrm{5}} +\mathrm{6}{x}^{\mathrm{3}} +\mathrm{8}{x}−\left(\mathrm{4}{x}^{\mathrm{4}} +\mathrm{32}\right) \\ $$$${f}\left({x}\right)={g}\left({x}\right)−{h}\left({x}\right) \\ $$$$\frac{{df}}{{dx}}=\frac{{dg}}{{dx}}−\frac{{dh}}{{dx}}=\left(\mathrm{5}{x}^{\mathrm{4}} +\mathrm{18}{x}^{\mathrm{2}} +\mathrm{8}\right)−\left(\mathrm{16}{x}^{\mathrm{3}} \right) \\ $$$$={x}^{\mathrm{3}} \left(\mathrm{5}{x}−\mathrm{16}\right)+\mathrm{18}{x}^{\mathrm{2}} +\mathrm{8}.. \\ $$$${now}\:{look}\:{when}\:{x}>\mathrm{3}.\mathrm{2}\:\:\:\:\frac{{df}}{{dx}}>\mathrm{0} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{there}}\:\boldsymbol{{will}}\:\boldsymbol{{be}}\:\boldsymbol{{no}}\:\boldsymbol{{sign}}\:\boldsymbol{{change}}\:\boldsymbol{{when}}\:\boldsymbol{{x}}>\mathrm{3}.\mathrm{2} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{this}}\:\boldsymbol{{eqn}}\:\boldsymbol{{has}}\:\boldsymbol{{only}}\:\boldsymbol{{one}}\:\boldsymbol{{root}}\:\boldsymbol{{that}}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{x}}=\mathrm{2}…\boldsymbol{{pls}}\:\boldsymbol{{pay}}\:\boldsymbol{{your}}\:\boldsymbol{{kind}}\:\boldsymbol{{attention}}… \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *