Menu Close

x-5-ax-4-cx-2-dx-e-0-let-x-rt-s-t-p-Find-r-s-p-such-that-equation-gets-transformed-to-t-5-Dt-E-0-




Question Number 56641 by ajfour last updated on 20/Mar/19
x^5 +ax^4 +cx^2 +dx+e=0  let x=((rt+s)/(t+p))  . Find r,s,p such  that equation gets transformed  to     λt^5 +Dt+E=0.
x5+ax4+cx2+dx+e=0letx=rt+st+p.Findr,s,psuchthatequationgetstransformedtoλt5+Dt+E=0.
Commented by ajfour last updated on 20/Mar/19
Granted this is done, we need to  see if the quintic can perhaps now  be solved..  let     x^5 +kx+q=0  equivalently    (x^2 +fx+g)(x^3 +hx^2 +mx+n)=0  ⇒  x^5 +(h+f)x^4 +(m+fh+g)x^3 +    (n+fm+gh)x^2 +(fn+gm)x+gn=0  ⇒             h+f=0         m+fh+g=0         n+fm+gh=0     ...(i)         fn+gm=k            ....(ii)         gn=q     from (i)     [ (q/g)−h(h^2 −g)+gh=0   ]×h  & from (ii)      −((hq)/g)+g(h^2 −g)=k  Adding      3gh^2 +g^2 −h^4 =k   ]×g      ...(I)     &       gh^3 −2g^2 h = q      ]×h  Adding       g^2 h^2 +g^3 = gk+hq              ...(II)  from (I)      h^2  = ((3g±(√(9g^2 −4(k−g^2 ))))/2)  ⇒    h^2  = ((3g)/2)±((√(13g^2 −4k))/2)  while from (II)          h= ((q±(√(q^2 −4g^3 (g^2 −k))))/(2g^2 ))  ⇒ ((3g)/2)±((√(13g^2 −4k))/2) = [((q±(√(q^2 −4g^3 (g^2 −k))))/(2g^2 ))]^2        +× ?%%/ Degree 5 is degree 5//
Grantedthisisdone,weneedtoseeifthequinticcanperhapsnowbesolved..letx5+kx+q=0equivalently(x2+fx+g)(x3+hx2+mx+n)=0x5+(h+f)x4+(m+fh+g)x3+(n+fm+gh)x2+(fn+gm)x+gn=0h+f=0m+fh+g=0n+fm+gh=0(i)fn+gm=k.(ii)gn=qfrom(i)[qgh(h2g)+gh=0]×h&from(ii)hqg+g(h2g)=kAdding3gh2+g2h4=k]×g(I)&gh32g2h=q]×hAddingg2h2+g3=gk+hq(II)from(I)h2=3g±9g24(kg2)2h2=3g2±13g24k2whilefrom(II)h=q±q24g3(g2k)2g23g2±13g24k2=[q±q24g3(g2k)2g2]2+×?%%/Degree5isdegree5//
Commented by Tawa1 last updated on 20/Mar/19
Wow,  God bless you sir.
Wow,Godblessyousir.
Answered by ajfour last updated on 20/Mar/19
(rt+s)^5 +a(rt+s)^4 (t+p)+c(rt+s)^2 (t+p)^3                      +d(rt+s)(t+p)^4 +(t+p)^5 =0  r^5 t^5 +5r^4 st^4 +10r^3 s^2 t^3 +10r^2 s^3 t^2 +           +5rs^4 t+s^5   +a(r^4 t^4 +4r^3 st^3 +6r^2 s^2 t^2 +4rs^3 t+s^4 )(t+p)  +c(r^2 t^2 +2rst+s^2 )(t^3 +3pt^2 +3p^2 t+p^3 )  +d(rt+s)(t^4 +4pt^3 +6p^2 t^2 +4p^3 t+p^4 )  +e(t^5 +5pt^4 +10p^2 t^3 +10p^3 t^2 +5p^4 t+p^5 )   = 0  ⇒      (r^5 +ar^4 +cr^2 +dr+e)t^5 +   (5r^4 s+apr^4 +4ar^3 s+3cpr^2 +2crs+               4dpr+ds+5ep)t^4 +    (10r^3 s^2 +4apr^3 s+6ar^2 s^2 +3cp^2 r^2      +6cprs+cs^2 +6dp^2 r+4dps+10ep^2 )t^3    (10r^2 s^3 +6apr^2 s^2 +4ars^3 +cp^3 r^2 +6cp^2 rs       +3cps^2 +4dp^3 r+6dp^2 s+10ep^3 )t^2      +Dt+E = 0  If coefficients of t^4 ,t^3 ,t^2  are to be zero;  then    5r^4 s+apr^4 +4ar^3 s+3cpr^2 +2crs+              4dpr+ds+5pe = 0  &  10r^3 s^2 +4apr^3 s+6ar^2 s^2 +3cp^2 r^2 +     6cprs+cs^2 +6dp^2 r+4dps+10ep^2 =0  &  10r^2 s^3 +6apr^2 s^2 +4ars^3 +cp^3 r^2 +6cp^2 rs   +3cps^2 +4dp^3 r+6dp^2 s+10ep^3 =0  .....
(rt+s)5+a(rt+s)4(t+p)+c(rt+s)2(t+p)3+d(rt+s)(t+p)4+(t+p)5=0r5t5+5r4st4+10r3s2t3+10r2s3t2++5rs4t+s5+a(r4t4+4r3st3+6r2s2t2+4rs3t+s4)(t+p)+c(r2t2+2rst+s2)(t3+3pt2+3p2t+p3)+d(rt+s)(t4+4pt3+6p2t2+4p3t+p4)+e(t5+5pt4+10p2t3+10p3t2+5p4t+p5)=0(r5+ar4+cr2+dr+e)t5+(5r4s+apr4+4ar3s+3cpr2+2crs+4dpr+ds+5ep)t4+(10r3s2+4apr3s+6ar2s2+3cp2r2+6cprs+cs2+6dp2r+4dps+10ep2)t3(10r2s3+6apr2s2+4ars3+cp3r2+6cp2rs+3cps2+4dp3r+6dp2s+10ep3)t2+Dt+E=0Ifcoefficientsoft4,t3,t2aretobezero;then5r4s+apr4+4ar3s+3cpr2+2crs+4dpr+ds+5pe=0&10r3s2+4apr3s+6ar2s2+3cp2r2+6cprs+cs2+6dp2r+4dps+10ep2=0&10r2s3+6apr2s2+4ars3+cp3r2+6cp2rs+3cps2+4dp3r+6dp2s+10ep3=0..
Commented by Tawa1 last updated on 20/Mar/19
Wow, God bless you sir. Weldone
Wow,Godblessyousir.Weldone

Leave a Reply

Your email address will not be published. Required fields are marked *