Menu Close

x-5-y-3-5-x-3-y-139-x-y-R-gt-0-find-maximum-and-minimum-of-x-y-xy-




Question Number 153513 by yeti123 last updated on 08/Sep/21
((x/5) + (y/3))((5/x) + (3/y)) = 139, ∀x,y ∈ R_(>0)   find maximum and minimum of  ((x + y)/( (√(xy))))
(x5+y3)(5x+3y)=139,x,yR>0findmaximumandminimumofx+yxy
Answered by liberty last updated on 08/Sep/21
⇒((x+y)/( (√(xy)))) = (√(x/y))+(√(y/x))=(√((5λ)/3))+(√(3/(5λ)))  from condition  2+((3x)/(5y))+((5y)/(3x)) =139  ((3x)/(5y))+((5y)/(3x))=137 set ((3x)/(5y))=λ⇒(x/y)=((5λ)/3)  λ+(1/λ)=137⇒λ^2 −137λ+1=0  λ=((137 ±(√((137+2)(137−2))))/2)  λ=((137±136.98)/2) → { ((λ_1 =136.99)),((λ_2 =0.007)) :}  f(λ_1 )=(√((5×136.99)/3))+(√(3/(5×136.99)))             ≈15.176 (max)  f(λ_2 )=(√((5×0.007)/3))+(√(3/(5×0.07)))            ≈ 9.366 (min)
x+yxy=xy+yx=5λ3+35λfromcondition2+3x5y+5y3x=1393x5y+5y3x=137set3x5y=λxy=5λ3λ+1λ=137λ2137λ+1=0λ=137±(137+2)(1372)2λ=137±136.982{λ1=136.99λ2=0.007f(λ1)=5×136.993+35×136.9915.176(max)f(λ2)=5×0.0073+35×0.079.366(min)
Commented by yeti123 last updated on 08/Sep/21
ok, thanks
ok,thanks
Commented by MJS_new last updated on 08/Sep/21
you should round significant figures  λ_1 ≈136.99  λ_2 ≈.0072997  ⇒  f(λ_1 )≈15.176  f(λ_2 )≈9.1765  as you can see your path is ok but your 2^(nd)   result is not...
youshouldroundsignificantfiguresλ1136.99λ2.0072997f(λ1)15.176f(λ2)9.1765asyoucanseeyourpathisokbutyour2ndresultisnot
Commented by liberty last updated on 08/Sep/21
Commented by liberty last updated on 08/Sep/21
o yes...
oyes
Answered by MJS_new last updated on 08/Sep/21
strange question...  ((x/5)+(y/3))((5/x)+(3/y))=139 ⇒ y=((411±9(√(2085)))/(10))x  ⇒ ((x+y)/( (√(xy))))=±3+((4(√(2085)))/(15))  ⇒ there are only 2 values for x>0  min=−3+((4(√(2085)))/(15))  max=3+((4(√(2085)))/(15))
strangequestion(x5+y3)(5x+3y)=139y=411±9208510xx+yxy=±3+4208515thereareonly2valuesforx>0min=3+4208515max=3+4208515
Commented by liberty last updated on 08/Sep/21
 3+((4(√(2085)))/(15)) = 15.176
3+4208515=15.176
Commented by MJS_new last updated on 08/Sep/21
no.  ≈15.176
no.15.176
Commented by liberty last updated on 08/Sep/21
����������
Commented by yeti123 last updated on 08/Sep/21
ok, I get it. thanks
ok,Igetit.thanks

Leave a Reply

Your email address will not be published. Required fields are marked *