Menu Close

x-6-e-4x-2-dx-




Question Number 117148 by bemath last updated on 10/Oct/20
   ∫ x^6  e^(−4x^2 )  dx =?
x6e4x2dx=?
Answered by Olaf last updated on 10/Oct/20
  I = ∫(−(1/8)x^5 )(−8xe^(−4x^2 ) )dx  I = −(x^5 /8)e^(−4x^2 ) +(5/8)∫x^4 e^(−4x^2 ) dx  ...and three other times by successive parts :  I = −(x/8)(x^4 +((5x^2 )/8)+((15)/(64)))e^(−4x^2 ) +((15(√π)erf(2x))/(2048))
I=(18x5)(8xe4x2)dxI=x58e4x2+58x4e4x2dxandthreeothertimesbysuccessiveparts:I=x8(x4+5x28+1564)e4x2+15πerf(2x)2048
Commented by bemath last updated on 10/Oct/20
erf = error function?
erf=errorfunction?
Commented by Olaf last updated on 10/Oct/20
yes sir.  Gauss error function.  erf(x) = (2/( (√π)))∫_0 ^x e^(−t^2 ) dt
yessir.Gausserrorfunction.erf(x)=2π0xet2dt
Answered by 1549442205PVT last updated on 10/Oct/20
Put 4x^2 =t⇒8xdx=dt⇒dx=(dt/(4(√t)))     ∫ x^6  e^(−4x^2 )  dx =∫((t/4))^3 e^(−t) ×(dt/(4(√t)))  =(1/2^8 )∫t^(5/2) e^(−t) dt=−(1/2^8 )∫t^(5/2) de^(−t)   =−(1/2^8 )t^(5/2) e^(−t) −(1/2^8 )∫(5/2)t^(3/2) de^(−t)   =−(1/2^8 )t^(5/2) e^(−t) −(1/2^8 )×(5/2)t^(3/2) e^(−t) −(5/2^9 )×(3/2)(√t) e^(−t)   +((15)/2^(10) )∫e^(−t) (1/(2(√t)))dt=  Since e^(−t) (1/(2(√t))) dt=e^(−4x^2 ) ×(1/(2(√t)))×4(√t) dx=2e^(−4x^2 ) dx  ⇒∫e^(−t) (√t) dt=∫e^((−2x)^2 ) d(2x)  =(π/2)×(2/π)∫e^((−2x)^2 ) d(2x)=((√π)/2)erf(2x)  t^(5/2) =(2x)^5 =32x^5 ,t^(3/2) =(2x)^3 =8x^4   We get:  F=(1/2^8 )e^(−4x^2 ) (−32x^5 −20x^3 −((15)/2)x)  +((15)/2^(10) )∫(1/(2(√t)))e^(−4x^2 ) dx  =((−e^(−4x^2 ) )/(512))(64x^5 +40x^2 +15x)+((15)/(2048))erf(2x)
Put4x2=t8xdx=dtdx=dt4tx6e4x2dx=(t4)3et×dt4t=128t5/2etdt=128t5/2det=128t5/2et12852t3/2det=128t5/2et128×52t3/2et529×32tet+15210et12tdt=Sinceet12tdt=e4x2×12t×4tdx=2e4x2dxettdt=e(2x)2d(2x)=π2×2πe(2x)2d(2x)=π2erf(2x)t5/2=(2x)5=32x5,t3/2=(2x)3=8x4Weget:F=128e4x2(32x520x3152x)+1521012te4x2dx=e4x2512(64x5+40x2+15x)+152048erf(2x)

Leave a Reply

Your email address will not be published. Required fields are marked *