Question Number 191220 by anr0h3 last updated on 21/Apr/23
$${x}^{\mathrm{6}} −{x}^{\mathrm{3}} =\mathrm{2}\:{solve}\:{for}\:{x} \\ $$$$ \\ $$$${m}={x}^{\mathrm{3}} \\ $$$${m}^{\mathrm{2}} =\left({x}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$${m}^{\mathrm{2}} −{m}=\mathrm{2} \\ $$$${m}^{\mathrm{2}} −{m}−\mathrm{2}=\mathrm{0} \\ $$$$\alpha+\beta=\mathrm{1}\rightarrow\alpha=\frac{\mathrm{1}}{\mathrm{2}}+\mu\:\:{and}\:\:\beta=\frac{\mathrm{1}}{\mathrm{2}}−\mu \\ $$$$\alpha\centerdot\beta=\left(\frac{\mathrm{1}}{\mathrm{2}}+\mu\right)\centerdot\left(\frac{\mathrm{1}}{\mathrm{2}}−\mu\right)=−\mathrm{2} \\ $$$$\alpha\centerdot\beta=\left(\frac{\mathrm{1}}{\mathrm{2}}−\mu\right)\centerdot\left(\frac{\mathrm{1}}{\mathrm{2}}+\mu\right)=−\mathrm{2} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}−\mu^{\mathrm{2}} =−\mathrm{2} \\ $$$$\mu^{\mathrm{2}} =\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\mu=\sqrt{\frac{\mathrm{9}}{\mathrm{4}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\alpha=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}=\frac{−\mathrm{1}+\mathrm{3}}{\mathrm{2}} \\ $$$$\beta=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}=\frac{−\mathrm{1}−\mathrm{3}}{\mathrm{2}} \\ $$$$\left({m}+\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}}\right)\left({m}+\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$${m}_{\mathrm{1}} =\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}} \\ $$$${m}_{\mathrm{2}} =−\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}} \\ $$$${m}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{1}\pm\mathrm{3}}{\mathrm{2}} \\ $$$${m}={x}^{\mathrm{3}} \rightarrow{x}=\left(\frac{\mathrm{1}\pm\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$ \\ $$
Commented by Tinku Tara last updated on 21/Apr/23
$$\left(−\frac{\mathrm{1}}{\mathrm{2}}+\mu\right)\left(−\frac{\mathrm{1}}{\mathrm{2}}−\mu\right)=−\mathrm{2} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{4}}−\mu^{\mathrm{2}} =−\mathrm{2} \\ $$$$\mathrm{You}\:\mathrm{made}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{sign}\:\mathrm{at} \\ $$$$\mathrm{this}\:\mathrm{step} \\ $$$$ \\ $$
Commented by anr0h3 last updated on 21/Apr/23
$${x}^{\mathrm{6}} −{x}^{\mathrm{3}} =\mathrm{2}\:{solve}\:{for}\:{x} \\ $$$$ \\ $$$${m}={x}^{\mathrm{3}} \\ $$$${m}^{\mathrm{2}} =\left({x}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$${m}^{\mathrm{2}} −{m}=\mathrm{2} \\ $$$${m}^{\mathrm{2}} −{m}−\mathrm{2}=\mathrm{0} \\ $$$$\alpha+\beta=\mathrm{1}\rightarrow\alpha=\frac{\mathrm{1}}{\mathrm{2}}+\mu\:\:{and}\:\:\beta=\frac{\mathrm{1}}{\mathrm{2}}−\mu \\ $$$$\alpha\centerdot\beta=\left(\frac{\mathrm{1}}{\mathrm{2}}+\mu\right)\centerdot\left(\frac{\mathrm{1}}{\mathrm{2}}−\mu\right)=−\mathrm{2} \\ $$$$\alpha\centerdot\beta=\left(\frac{\mathrm{1}}{\mathrm{2}}−\mu\right)\centerdot\left(\frac{\mathrm{1}}{\mathrm{2}}+\mu\right)=−\mathrm{2} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}−\mu^{\mathrm{2}} =−\mathrm{2} \\ $$$$\mu^{\mathrm{2}} =\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\mu=\sqrt{\frac{\mathrm{9}}{\mathrm{4}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\alpha=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}} \\ $$$$\beta=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}} \\ $$$$\left({m}+\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}}\right)\left({m}+\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$${m}_{\mathrm{1}} =\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}} \\ $$$${m}_{\mathrm{2}} =\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}} \\ $$$${m}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{1}\pm\mathrm{3}}{\mathrm{2}} \\ $$$${m}={x}^{\mathrm{3}} \rightarrow{x}=\left(\frac{\mathrm{1}\pm\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$ \\ $$
Commented by Tinku Tara last updated on 21/Apr/23
$$\alpha+\beta=\mathrm{1}\:\left({not}\:−\mathrm{1}\right) \\ $$
Commented by anr0h3 last updated on 21/Apr/23
$${x}^{\mathrm{6}} −{x}^{\mathrm{3}} =\mathrm{2}\:{solve}\:{for}\:{x} \\ $$$$ \\ $$$${m}={x}^{\mathrm{3}} \\ $$$${m}^{\mathrm{2}} =\left({x}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$${m}^{\mathrm{2}} −{m}=\mathrm{2} \\ $$$${m}^{\mathrm{2}} −{m}−\mathrm{2}=\mathrm{0} \\ $$$$\alpha+\beta=\mathrm{1}\rightarrow\alpha=\frac{\mathrm{1}}{\mathrm{2}}+\mu\:\:{and}\:\:\beta=\frac{\mathrm{1}}{\mathrm{2}}−\mu \\ $$$$\alpha\centerdot\beta=\left(\frac{\mathrm{1}}{\mathrm{2}}+\mu\right)\centerdot\left(\frac{\mathrm{1}}{\mathrm{2}}−\mu\right)=−\mathrm{2} \\ $$$$\alpha\centerdot\beta=\left(\frac{\mathrm{1}}{\mathrm{2}}−\mu\right)\centerdot\left(\frac{\mathrm{1}}{\mathrm{2}}+\mu\right)=−\mathrm{2} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}−\mu^{\mathrm{2}} =−\mathrm{2} \\ $$$$\mu^{\mathrm{2}} =\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\mu=\sqrt{\frac{\mathrm{9}}{\mathrm{4}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\alpha=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}} \\ $$$$\beta=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}} \\ $$$$\left({m}+\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}}\right)\left({m}+\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$${m}_{\mathrm{1}} =\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}} \\ $$$${m}_{\mathrm{2}} =\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}} \\ $$$${m}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{1}\pm\mathrm{3}}{\mathrm{2}} \\ $$$${m}={x}^{\mathrm{3}} \rightarrow{x}=\left(\frac{\mathrm{1}\pm\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$ \\ $$
Commented by anr0h3 last updated on 21/Apr/23
thnks, I was clearing my doubts whit the PO shen technique, and now I'm learning about the complex solution in this problem, isn't sarcasm, again thnks
Answered by Frix last updated on 21/Apr/23
$$\mathrm{What}\:\mathrm{have}\:\mathrm{you}\:\mathrm{done}??? \\ $$$${m}^{\mathrm{2}} −{m}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{Use}\:\mathrm{formula}:\:{X}^{\mathrm{2}} +{pX}+{q}=\mathrm{0}\:\Rightarrow\:{X}=−\frac{{p}}{\mathrm{2}}\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}} \\ $$$$\mathrm{Here}\:{p}=−\mathrm{1}\wedge{q}=−\mathrm{2} \\ $$$${m}=\frac{\mathrm{1}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${m}_{\mathrm{1}} =−\mathrm{1} \\ $$$${m}_{\mathrm{2}} =\mathrm{2} \\ $$$${x}_{\mathrm{1},\:\mathrm{3},\:\mathrm{5}} ^{\mathrm{3}} =−\mathrm{1} \\ $$$${x}_{\mathrm{2},\:\mathrm{4},\:\mathrm{6}} ^{\mathrm{3}} =\mathrm{2} \\ $$$${x}_{\mathrm{1}} =−\mathrm{1}\:\:{x}_{\mathrm{3}} =−\omega\:\:{x}_{\mathrm{5}} =−\omega^{\mathrm{2}} \\ $$$${x}_{\mathrm{2}} =\sqrt[{\mathrm{3}}]{\mathrm{2}}\:\:{x}_{\mathrm{4}} =\sqrt[{\mathrm{3}}]{\mathrm{2}}\omega\:\:{x}_{\mathrm{5}} =\sqrt[{\mathrm{3}}]{\mathrm{2}}\omega^{\mathrm{2}} \\ $$$$\left[\omega=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right] \\ $$
Commented by anr0h3 last updated on 21/Apr/23
sorry, I have a mistake sign but the corrections have done, thnks