Question Number 30849 by Penguin last updated on 27/Feb/18
$${x}^{\mathrm{7}} +{x}^{\mathrm{6}} +{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0} \\ $$$$\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\sum}}\left[\Re\left({x}_{{k}} \right)\right]^{\mathrm{2}} \:=\:? \\ $$$${x}_{{k}} \:=\:{k}^{\:\mathrm{th}} \:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\Re\left({x}_{{k}} \right)\:=\:\mathrm{real}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{root} \\ $$
Commented by prof Abdo imad last updated on 27/Feb/18
$${z}\:{root}\:{for}\:{this}\:{equation}\:\Leftrightarrow\:{z}^{\mathrm{8}} =\mathrm{1}\:{and}\:{z}\neq{o}\: \\ $$$${the}\:{roots}\:{of}\:{this}\:{equation}\:{are}\:{z}_{{k}} \:={e}^{{i}\frac{{k}\pi}{\mathrm{4}}} \:\:{and} \\ $$$${k}\in\left[\left[\mathrm{1},\mathrm{7}\right]\right]\:\Rightarrow\:{Re}\left({z}_{{k}} \right)\:=\:{cos}\left(\frac{{k}\pi}{\mathrm{4}}\right)\Rightarrow \\ $$$$\left({Re}\left({z}_{{k}} \right)\right)^{\mathrm{2}} ={cos}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{4}}\right)\:{and} \\ $$$$\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \:\left({Re}\left({z}_{{k}} \right)\right)^{\mathrm{2}} =\:\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \frac{\mathrm{1}+{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{7}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{1}} ^{\mathrm{7}\:} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)=\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\:−\mathrm{1} \\ $$$$={Re}\left(\:\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:{e}^{{i}\frac{{k}\pi}{\mathrm{2}}} \right)−\mathrm{1} \\ $$$${Re}\left(\:\frac{\mathrm{1}−\left({e}^{{i}\frac{\pi}{\mathrm{2}}} \right)^{\mathrm{8}} }{\mathrm{1}−{e}^{{i}\frac{\pi}{\mathrm{2}}} }\right)−\mathrm{1}=\mathrm{0}−\mathrm{1}=−\mathrm{1}\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \left({Re}\left({z}_{{k}} \right)\right)^{\mathrm{2}} =\frac{\mathrm{7}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}\:=\mathrm{3}. \\ $$$$ \\ $$
Commented by Penguin last updated on 27/Feb/18
$$\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \:\left({Re}\left({z}_{{k}} \right)\right)^{\mathrm{2}} =\:\sum_{{k}=\mathrm{1}} ^{\mathrm{7}} \frac{\mathrm{1}+{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}\:\mathrm{this}\:\mathrm{result}? \\ $$
Commented by MJS last updated on 27/Feb/18
$$\mathrm{I}\:\mathrm{tried}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it},\:\mathrm{must}\:\mathrm{admit}\:\mathrm{that} \\ $$$$\mathrm{this}\:\mathrm{might}\:\mathrm{not}\:\mathrm{always}\:\mathrm{be}\:\mathrm{possible} \\ $$$$\left(\mathrm{but}\:\mathrm{I}\:\mathrm{always}\:\mathrm{love}\:\mathrm{to}\:\mathrm{try}…\right) \\ $$$${x}_{\mathrm{1}} =−\mathrm{1} \\ $$$${x}_{\mathrm{2}} =−\mathrm{i} \\ $$$${x}_{\mathrm{3}} =\mathrm{i} \\ $$$${x}_{\mathrm{4}} =−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$${x}_{\mathrm{5}} =−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$${x}_{\mathrm{6}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$${x}_{\mathrm{7}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\sum}}\left[\Re\left({x}_{{k}} \right)\right]^{\mathrm{2}} \:=\:\mathrm{3} \\ $$
Commented by rahul 19 last updated on 27/Feb/18
$${yahh},\:{short}\:{methods}! \\ $$
Commented by abdo imad last updated on 28/Feb/18
$${look}\:{my}\:{proof}\:{i}\:{have}\:{used}\:{the}\:{formula}\:{cos}^{\mathrm{2}} \alpha=\frac{\mathrm{1}+{cos}\left(\mathrm{2}\alpha\right)}{\mathrm{2}}\:. \\ $$