Menu Close

x-7-x-6-x-5-x-4-x-3-x-2-x-1-0-k-1-7-x-k-2-x-k-k-th-root-of-the-equation-x-k-real-part-of-the-root-




Question Number 30849 by Penguin last updated on 27/Feb/18
x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x+1=0     Σ_(k=1) ^7 [ℜ(x_k )]^2  = ?  x_k  = k^( th)  root of the equation  ℜ(x_k ) = real part of the root
x7+x6+x5+x4+x3+x2+x+1=07k=1[(xk)]2=?xk=kthrootoftheequation(xk)=realpartoftheroot
Commented by prof Abdo imad last updated on 27/Feb/18
z root for this equation ⇔ z^8 =1 and z≠o   the roots of this equation are z_k  =e^(i((kπ)/4))   and  k∈[[1,7]] ⇒ Re(z_k ) = cos(((kπ)/4))⇒  (Re(z_k ))^2 =cos^2 (((kπ)/4)) and  Σ_(k=1) ^7  (Re(z_k ))^2 = Σ_(k=1) ^7 ((1+cos(((kπ)/2)))/2)  =(7/2) +(1/2) Σ_(k=1) ^(7 )  cos(((kπ)/2)) but  Σ_(k=1) ^7  cos(((kπ)/2))=Σ_(k=0) ^7  cos(((kπ)/2)) −1  =Re( Σ_(k=0) ^7  e^(i((kπ)/2)) )−1  Re( ((1−(e^(i(π/2)) )^8 )/(1−e^(i(π/2)) )))−1=0−1=−1⇒  Σ_(k=1) ^7 (Re(z_k ))^2 =(7/2) −(1/2) =3.
zrootforthisequationz8=1andzotherootsofthisequationarezk=eikπ4andk[[1,7]]Re(zk)=cos(kπ4)(Re(zk))2=cos2(kπ4)andk=17(Re(zk))2=k=171+cos(kπ2)2=72+12k=17cos(kπ2)butk=17cos(kπ2)=k=07cos(kπ2)1=Re(k=07eikπ2)1Re(1(eiπ2)81eiπ2)1=01=1k=17(Re(zk))2=7212=3.
Commented by Penguin last updated on 27/Feb/18
Σ_(k=1) ^7  (Re(z_k ))^2 = Σ_(k=1) ^7 ((1+cos(((kπ)/2)))/2)  how did you get this result?
k=17(Re(zk))2=k=171+cos(kπ2)2howdidyougetthisresult?
Commented by MJS last updated on 27/Feb/18
I tried to solve it, must admit that  this might not always be possible  (but I always love to try...)  x_1 =−1  x_2 =−i  x_3 =i  x_4 =−((√2)/2)−((√2)/2)i  x_5 =−((√2)/2)+((√2)/2)i  x_6 =((√2)/2)−((√2)/2)i  x_7 =((√2)/2)+((√2)/2)i  Σ_(k=1) ^7 [ℜ(x_k )]^2  = 3
Itriedtosolveit,mustadmitthatthismightnotalwaysbepossible(butIalwayslovetotry)x1=1x2=ix3=ix4=2222ix5=22+22ix6=2222ix7=22+22i7k=1[(xk)]2=3
Commented by rahul 19 last updated on 27/Feb/18
yahh, short methods!
yahh,shortmethods!
Commented by abdo imad last updated on 28/Feb/18
look my proof i have used the formula cos^2 α=((1+cos(2α))/2) .
lookmyproofihaveusedtheformulacos2α=1+cos(2α)2.

Leave a Reply

Your email address will not be published. Required fields are marked *