Question Number 51456 by Tawa1 last updated on 27/Dec/18
$$\int\:\:\:\frac{\mathrm{x}^{\mathrm{8}} }{\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{64}}\:\mathrm{dx} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Dec/18
$${x}^{\mathrm{3}} =\mathrm{2}^{\mathrm{3}} {tan}\theta \\ $$$${x}=\mathrm{2}\left({tan}\theta\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${dx}=\frac{\mathrm{2}}{\mathrm{3}}×\left({tan}\theta\right)^{\frac{−\mathrm{2}}{\mathrm{3}}} ×{sec}^{\mathrm{2}} \theta \\ $$$$\int\frac{\mathrm{2}^{\mathrm{8}} ×\left({tan}\theta\right)^{\frac{\mathrm{8}}{\mathrm{3}}} ×\frac{\mathrm{2}}{\mathrm{3}}×\left({tan}\theta\right)^{\frac{−\mathrm{2}}{\mathrm{3}}} {sec}^{\mathrm{2}} \theta}{\mathrm{2}^{\mathrm{6}} {tan}^{\mathrm{2}} \theta+\mathrm{2}^{\mathrm{6}} }{d}\theta \\ $$$$=\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{3}}\int\left({tan}\theta\right)^{\frac{\mathrm{8}}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}} {d}\theta \\ $$$$=\frac{\mathrm{8}}{\mathrm{3}}\int{tan}^{\mathrm{2}} \theta{d}\theta \\ $$$$=\frac{\mathrm{8}}{\mathrm{3}}\left[\int\left({sec}^{\mathrm{2}} \theta−\mathrm{1}\right){d}\theta\right. \\ $$$$=\frac{\mathrm{8}}{\mathrm{3}}\left[{tan}\theta−\theta\right]+{c} \\ $$$$=\frac{\mathrm{8}}{\mathrm{3}}\left[\frac{{x}^{\mathrm{3}} }{\mathrm{8}}−{tan}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{3}} }{\mathrm{8}}\right)\right]+{c} \\ $$
Commented by Tawa1 last updated on 27/Dec/18
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$