Menu Close

x-9-sin-x-10-dx-




Question Number 83259 by 09658867628 last updated on 29/Feb/20
∫x^9 sin x^(10) dx
$$\int{x}^{\mathrm{9}} \mathrm{sin}\:{x}^{\mathrm{10}} {dx} \\ $$
Answered by TANMAY PANACEA last updated on 29/Feb/20
t=x^(10) →(dt/dx)=10x^9   ∫sint×(dt/(10))→=(1/(10))×−cost+c  ((−1)/(10))cos(x^(10) )+c    answer
$${t}={x}^{\mathrm{10}} \rightarrow\frac{{dt}}{{dx}}=\mathrm{10}{x}^{\mathrm{9}} \\ $$$$\int{sint}×\frac{{dt}}{\mathrm{10}}\rightarrow=\frac{\mathrm{1}}{\mathrm{10}}×−\boldsymbol{{cost}}+\boldsymbol{{c}} \\ $$$$\frac{−\mathrm{1}}{\mathrm{10}}\boldsymbol{{cos}}\left(\boldsymbol{{x}}^{\mathrm{10}} \right)+\boldsymbol{{c}}\:\:\:\:\boldsymbol{{answer}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *