Menu Close

x-a-b-x-dx-where-a-lt-x-lt-b-




Question Number 115656 by bobhans last updated on 27/Sep/20
∫ (√((x−a)/(b−x))) dx = ?  where a <x < b
xabxdx=?wherea<x<b
Commented by bemath last updated on 27/Sep/20
I= ∫ (√((x−a)/(−x+b))) dx   I = −(√((x−a)(b−x))) −(a+b)sin^(−1) ((√((b−x)/(a+b))))+C
I=xax+bdxI=(xa)(bx)(a+b)sin1(bxa+b)+C
Answered by bobhans last updated on 27/Sep/20
letting x = a cos^2  s + b sin^2 s  dx = 2(b−a) cos s sin s ds  I= 2(b−a)∫ (√((sin^2 s)/(cos^2 s))) sin s cos s ds  I=2(b−a)∫ ((1/2)−(1/2)cos 2s) ds  I=(b−a)(s−(1/2)sin 2s)+c  I=(b−a)(s−sin s cos s ) + c  I=(b−a) (arc sin ((√((x−a)/(b−a))))−(√((x−a)(b−x))) )+c
lettingx=acos2s+bsin2sdx=2(ba)cosssinsdsI=2(ba)sin2scos2ssinscossdsI=2(ba)(1212cos2s)dsI=(ba)(s12sin2s)+cI=(ba)(ssinscoss)+cI=(ba)(arcsin(xaba)(xa)(bx))+c
Answered by TANMAY PANACEA last updated on 27/Sep/20
∫((x−a)/( (√((x−a)(b−x)))))dx  (x−a)(b−x)=xb−x^2 −ab+ax  =x(a+b)−x^2 −ab  =−ab−{x^2 −2.x.((a+b)/2)+(((a+b)/2))^2 −(((a+b)/2))^2 }  =(((a+b)/2))^2 −ab−(x−((a+b)/2))^2   =(((a−b)/2))^2 −{x−((a+b)/2)}^2 →=(((b−a)/2))^2 −{x−((a+b)/2)}^2   now..  t^2 =x(a+b)−x^2 −ab  2tdt={(a+b)−2x}dx  tdt=(((a+b)/2)−x)dx  ∫((−(((a+b)/2)−x−((a+b)/2))−a)/( (√((x−a)(b−x)))))dx  (−1)∫((((a+b)/2)−x)/( (√((x−a)(b−x)))))dx+∫((((a+b)/2)−a)/( (√((x−a)(b−x)))))dx  (−1)∫((tdt)/t)+((b−a)/2)∫(dx/( (√((((b−a)/2))^2 −{x−((a+b)/2)}^2 ))))  (−t)+((b−a)/2)×sin^(−1) (((x−((a+b)/2))/((b−a)/2)))+c  −1×(√((x−a)(b−x))) +((b−a)/2)sin^(−1) (((x−((a+b)/2))/((b−a)/2)))+c  pls check mistake if any
xa(xa)(bx)dx(xa)(bx)=xbx2ab+ax=x(a+b)x2ab=ab{x22.x.a+b2+(a+b2)2(a+b2)2}=(a+b2)2ab(xa+b2)2=(ab2)2{xa+b2}2→=(ba2)2{xa+b2}2now..t2=x(a+b)x2ab2tdt={(a+b)2x}dxtdt=(a+b2x)dx(a+b2xa+b2)a(xa)(bx)dx(1)a+b2x(xa)(bx)dx+a+b2a(xa)(bx)dx(1)tdtt+ba2dx(ba2)2{xa+b2}2(t)+ba2×sin1(xa+b2ba2)+c1×(xa)(bx)+ba2sin1(xa+b2ba2)+cplscheckmistakeifany
Answered by Bird last updated on 27/Sep/20
I =∫ (√((x−a)/(b−x)))dx we do the ch.  (√((x−a)/(b−x)))=t ⇒((x−a)/(b−x))=t^2  ⇒  x−a =t^2 b−t^2 x ⇒(1+t^2 )x=bt^2  +a  ⇒x =((bt^2 +a)/(t^2  +1)) ⇒(dx/dt)=((2bt(t^2 +1)−2t(bt^2 +a))/((t^2 +1)^2 ))  =((2bt−2at)/((t^2  +1)^2 )) ⇒  I =(2b−2a)∫  (t^2 /((t^2 +1)^2 ))dt  =(2b−2a)∫  ((t^2 +1−1)/((t^2 +1)^2 ))dt  =(2b−2a){ arctant +∫  (dt/((t^2 +1)^2 ))}  but  ∫  (dt/((1+t^2 )^2 )) =_(t=tamθ)   ∫ (((1+tan^2 θ)dθ)/((1+tan^2 θ)^2 ))  =∫  (dθ/(1+tan^2 θ)) =∫ cos^2 θ dθ  =(1/2)∫(1+cos(2θ))dθ  =(θ/2) +(1/4)sin(2θ) +c  =(1/2)arctant +(1/4)×((2t)/(1+t^2 )) +c  =(1/2)arctan((√((x−a)/(b−x))))+((√((x−a)/(b−x)))/(2(1+((x−a)/(b−x)))))+c ⇒  I =2(b−a){ (3/2)arctan(√((x−a)/(b−x)))  +((√((x−a)/(b−x)))/(2(1+((x−a)/(b−x)))))}+c
I=xabxdxwedothech.xabx=txabx=t2xa=t2bt2x(1+t2)x=bt2+ax=bt2+at2+1dxdt=2bt(t2+1)2t(bt2+a)(t2+1)2=2bt2at(t2+1)2I=(2b2a)t2(t2+1)2dt=(2b2a)t2+11(t2+1)2dt=(2b2a){arctant+dt(t2+1)2}butdt(1+t2)2=t=tamθ(1+tan2θ)dθ(1+tan2θ)2=dθ1+tan2θ=cos2θdθ=12(1+cos(2θ))dθ=θ2+14sin(2θ)+c=12arctant+14×2t1+t2+c=12arctan(xabx)+xabx2(1+xabx)+cI=2(ba){32arctanxabx+xabx2(1+xabx)}+c

Leave a Reply

Your email address will not be published. Required fields are marked *