Menu Close

x-and-y-any-integer-satisfy-equation-x-2004-x-2006-2-y-the-greatest-possible-value-of-x-y-




Question Number 80004 by jagoll last updated on 30/Jan/20
x and y any integer satisfy  equation (x−2004)(x−2006)=2^y   the greatest possible value  of x+y
xandyanyintegersatisfyequation(x2004)(x2006)=2ythegreatestpossiblevalueofx+y
Commented by jagoll last updated on 30/Jan/20
thank you mister
thankyoumister
Commented by mr W last updated on 30/Jan/20
let u=x−2004  u(u−2)=2^y   u^2 −2u+1=2^y +1  (u−1)^2 =(2^y +1)  u=1±(√(2^y +1))  2^y +1=(n+1)^2  say  2^y =(n+1)^2 −1=n(n+2)  ⇒n=2^p , n+2=2^q  ⇒(2^(p−1) +1)=2^(q−1)   ⇒p=1 ⇒n=2 ⇒2^y =2×4=8 ⇒y=3  ⇒u=x−2004=1±3  ⇒x=2008 or 2002  (x+y)_(max) =2008+3=2011
letu=x2004u(u2)=2yu22u+1=2y+1(u1)2=(2y+1)u=1±2y+12y+1=(n+1)2say2y=(n+1)21=n(n+2)n=2p,n+2=2q(2p1+1)=2q1p=1n=22y=2×4=8y=3u=x2004=1±3x=2008or2002(x+y)max=2008+3=2011
Answered by mind is power last updated on 30/Jan/20
(x−2004)(x−2006)=2^(a+b)   ⇒x−2004=2^a   y−2006=2^b   ⇒2^a −2^b =2^b (2^(a−b) −1)=2⇒b=1⇒a−b=1⇒a=2  ⇒y=a+b=3  x=2^2 +2004=2008  x+y=2008+3=2011 its exames of 2011?
(x2004)(x2006)=2a+bx2004=2ay2006=2b2a2b=2b(2ab1)=2b=1ab=1a=2y=a+b=3x=22+2004=2008x+y=2008+3=2011itsexamesof2011?
Commented by jagoll last updated on 30/Jan/20
if x = 2010   (x−2004)(x−2006)= 6×4 = 24≠2^y   sir
ifx=2010(x2004)(x2006)=6×4=242ysir
Commented by mind is power last updated on 30/Jan/20
mistack soory   2^y ,y≠2^y
mistacksoory2y,y2y

Leave a Reply

Your email address will not be published. Required fields are marked *