Menu Close

x-cos-x-dx-




Question Number 84498 by M±th+et£s last updated on 13/Mar/20
∫(√x) cos(√x) dx
$$\int\sqrt{{x}}\:{cos}\sqrt{{x}}\:{dx} \\ $$
Commented by jagoll last updated on 13/Mar/20
∫ ((x cos (√x))/( (√x))) dx   let (√x) = t ⇒ x=t^2   dx = 2t dt  ∫ ((t^2  cos t)/t) ×2t dt   =∫ 2t^2  cos t dt   = 2t^2  sin t −∫ 4t sin t dt  =2t^2  sin t −[ −4t cos t + ∫ 4 cos t dt]  = 2t^2  sin t+4t cos t−4sin t + c  =2x sin (√x) + 4(√x) cos (√x) −4sin (√x) + c
$$\int\:\frac{{x}\:\mathrm{cos}\:\sqrt{{x}}}{\:\sqrt{{x}}}\:{dx}\: \\ $$$${let}\:\sqrt{{x}}\:=\:{t}\:\Rightarrow\:{x}={t}^{\mathrm{2}} \\ $$$${dx}\:=\:\mathrm{2}{t}\:{dt} \\ $$$$\int\:\frac{\mathrm{t}^{\mathrm{2}} \:\mathrm{cos}\:\mathrm{t}}{\mathrm{t}}\:×\mathrm{2t}\:\mathrm{dt}\: \\ $$$$=\int\:\mathrm{2t}^{\mathrm{2}} \:\mathrm{cos}\:\mathrm{t}\:\mathrm{dt}\: \\ $$$$=\:\mathrm{2t}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{t}\:−\int\:\mathrm{4t}\:\mathrm{sin}\:\mathrm{t}\:\mathrm{dt} \\ $$$$=\mathrm{2t}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{t}\:−\left[\:−\mathrm{4t}\:\mathrm{cos}\:\mathrm{t}\:+\:\int\:\mathrm{4}\:\mathrm{cos}\:\mathrm{t}\:\mathrm{dt}\right] \\ $$$$=\:\mathrm{2t}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{t}+\mathrm{4t}\:\mathrm{cos}\:\mathrm{t}−\mathrm{4sin}\:\mathrm{t}\:+\:\mathrm{c} \\ $$$$=\mathrm{2x}\:\mathrm{sin}\:\sqrt{\mathrm{x}}\:+\:\mathrm{4}\sqrt{\mathrm{x}}\:\mathrm{cos}\:\sqrt{\mathrm{x}}\:−\mathrm{4sin}\:\sqrt{\mathrm{x}}\:+\:\mathrm{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *