Question Number 84498 by M±th+et£s last updated on 13/Mar/20
$$\int\sqrt{{x}}\:{cos}\sqrt{{x}}\:{dx} \\ $$
Commented by jagoll last updated on 13/Mar/20
$$\int\:\frac{{x}\:\mathrm{cos}\:\sqrt{{x}}}{\:\sqrt{{x}}}\:{dx}\: \\ $$$${let}\:\sqrt{{x}}\:=\:{t}\:\Rightarrow\:{x}={t}^{\mathrm{2}} \\ $$$${dx}\:=\:\mathrm{2}{t}\:{dt} \\ $$$$\int\:\frac{\mathrm{t}^{\mathrm{2}} \:\mathrm{cos}\:\mathrm{t}}{\mathrm{t}}\:×\mathrm{2t}\:\mathrm{dt}\: \\ $$$$=\int\:\mathrm{2t}^{\mathrm{2}} \:\mathrm{cos}\:\mathrm{t}\:\mathrm{dt}\: \\ $$$$=\:\mathrm{2t}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{t}\:−\int\:\mathrm{4t}\:\mathrm{sin}\:\mathrm{t}\:\mathrm{dt} \\ $$$$=\mathrm{2t}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{t}\:−\left[\:−\mathrm{4t}\:\mathrm{cos}\:\mathrm{t}\:+\:\int\:\mathrm{4}\:\mathrm{cos}\:\mathrm{t}\:\mathrm{dt}\right] \\ $$$$=\:\mathrm{2t}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{t}+\mathrm{4t}\:\mathrm{cos}\:\mathrm{t}−\mathrm{4sin}\:\mathrm{t}\:+\:\mathrm{c} \\ $$$$=\mathrm{2x}\:\mathrm{sin}\:\sqrt{\mathrm{x}}\:+\:\mathrm{4}\sqrt{\mathrm{x}}\:\mathrm{cos}\:\sqrt{\mathrm{x}}\:−\mathrm{4sin}\:\sqrt{\mathrm{x}}\:+\:\mathrm{c} \\ $$