Menu Close

x-cot-1-cos-tan-1-cos-sin-x-




Question Number 161181 by cortano last updated on 13/Dec/21
  x=cot^(−1) ((√(cos θ)))−tan^(−1) ((√(cos θ)))   sin x=?
$$\:\:{x}=\mathrm{cot}^{−\mathrm{1}} \left(\sqrt{\mathrm{cos}\:\theta}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{cos}\:\theta}\right) \\ $$$$\:\mathrm{sin}\:{x}=? \\ $$
Commented by MJS_new last updated on 13/Dec/21
sin (arctan a −arctan b) =((a−b)/( (√((a^2 +1)(b^2 +1)))))  arccot (r) =(1/(arctan r)) ⇒ a=(1/b)  ⇒  ((a−b)/( (√((a^2 +1)(b^2 +1)))))=((1−b^2 )/(1+b^2 ))  ⇒  answer is ((1−cos θ)/(1+cos θ))
$$\mathrm{sin}\:\left(\mathrm{arctan}\:{a}\:−\mathrm{arctan}\:{b}\right)\:=\frac{{a}−{b}}{\:\sqrt{\left({a}^{\mathrm{2}} +\mathrm{1}\right)\left({b}^{\mathrm{2}} +\mathrm{1}\right)}} \\ $$$$\mathrm{arccot}\:\left({r}\right)\:=\frac{\mathrm{1}}{\mathrm{arctan}\:{r}}\:\Rightarrow\:{a}=\frac{\mathrm{1}}{{b}} \\ $$$$\Rightarrow \\ $$$$\frac{{a}−{b}}{\:\sqrt{\left({a}^{\mathrm{2}} +\mathrm{1}\right)\left({b}^{\mathrm{2}} +\mathrm{1}\right)}}=\frac{\mathrm{1}−{b}^{\mathrm{2}} }{\mathrm{1}+{b}^{\mathrm{2}} } \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{1}+\mathrm{cos}\:\theta} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *