Menu Close

x-cot-1-cos-tan-1-cos-sin-x-




Question Number 161181 by cortano last updated on 13/Dec/21
  x=cot^(−1) ((√(cos θ)))−tan^(−1) ((√(cos θ)))   sin x=?
x=cot1(cosθ)tan1(cosθ)sinx=?
Commented by MJS_new last updated on 13/Dec/21
sin (arctan a −arctan b) =((a−b)/( (√((a^2 +1)(b^2 +1)))))  arccot (r) =(1/(arctan r)) ⇒ a=(1/b)  ⇒  ((a−b)/( (√((a^2 +1)(b^2 +1)))))=((1−b^2 )/(1+b^2 ))  ⇒  answer is ((1−cos θ)/(1+cos θ))
sin(arctanaarctanb)=ab(a2+1)(b2+1)arccot(r)=1arctanra=1bab(a2+1)(b2+1)=1b21+b2answeris1cosθ1+cosθ

Leave a Reply

Your email address will not be published. Required fields are marked *