Menu Close

x-dx-cot-x-tan-x-2-a-x-16-x-sin-4x-32-cos-4x-128-c-b-x-16-x-sin-4x-32-cos-4x-128-c-c-x-16-xsin-4x-64-cos-4x-128-c-d-x-16-xcos-




Question Number 103512 by bemath last updated on 15/Jul/20
∫ ((x dx)/((cot x+tan x)^2 )) =  (a) (x/(16))−((x sin 4x)/(32))−((cos 4x)/(128))+c  (b) (x/(16))+((x sin 4x)/(32))−((cos 4x)/(128))+c  (c) (x/(16))+((xsin 4x)/(64))+((cos 4x)/(128))+c  (d)(x/(16))+((xcos 4x)/(32))+((sin 4x)/(128))+c
xdx(cotx+tanx)2=(a)x16xsin4x32cos4x128+c(b)x16+xsin4x32cos4x128+c(c)x16+xsin4x64+cos4x128+c(d)x16+xcos4x32+sin4x128+c
Commented by bobhans last updated on 15/Jul/20
nothing answer too
nothinganswertoo
Commented by bemath last updated on 15/Jul/20
yes. i think the question wrong
yes.ithinkthequestionwrong
Answered by Dwaipayan Shikari last updated on 15/Jul/20
∫(x/((((cosx)/(sinx))+((sinx)/(cosx)))^2 ))dx=(1/4)∫xsin^2 2x=∫(x/8)(1−cos4x)  ∫(x/8)−(1/8)∫xcos4x  (x^2 /(16))−(1/(32))xsin4x+(1/(32))∫sin4x  (x^2 /(16))−(1/(32))xsin4x−(1/(128))cos4x+Constant
x(cosxsinx+sinxcosx)2dx=14xsin22x=x8(1cos4x)x818xcos4xx216132xsin4x+132sin4xx216132xsin4x1128cos4x+Constant
Answered by bramlex last updated on 15/Jul/20
cot x+tan x = ((cos x)/(sin x))+((sin x)/(cos x))  = (2/(sin 2x)) ; I = ∫ ((x dx)/(((4/(sin^2 2x)))))  = (1/4)∫ x((1/2)−(1/2)cos 4x) dx   = (1/8)∫ (x−xcos 4x) dx   = (1/8)((x^2 /2)−((xsin 4x)/4)−((cos 4x)/(16)))+c  = (x^2 /(16))−((xsin 4x)/(32))−((cos 4x)/(128))+c ■
cotx+tanx=cosxsinx+sinxcosx=2sin2x;I=xdx(4sin22x)=14x(1212cos4x)dx=18(xxcos4x)dx=18(x22xsin4x4cos4x16)+c=x216xsin4x32cos4x128+c◼

Leave a Reply

Your email address will not be published. Required fields are marked *