Question Number 89973 by john santu last updated on 20/Apr/20
$${x}\:\frac{{dy}}{{dx}}\:−{y}\:=\:{x}^{\mathrm{2}} \:\mathrm{tan}\:\left(\frac{{y}}{{x}}\right)\: \\ $$
Commented by john santu last updated on 20/Apr/20
$$\left[\:{let}\:\frac{{y}}{{x}}=\:{v}\:\Rightarrow{y}\:=\:{vx}\:\right]\: \\ $$$$\frac{{dy}}{{dx}}\:=\:{v}\:+\:{x}\:\frac{{dv}}{{dx}} \\ $$$${x}\:\left[\:{v}+{x}\:\frac{{dv}}{{dx}}\:\right]−{vx}\:=\:{x}^{\mathrm{2}} \:\mathrm{tan}\:{v}\: \\ $$$${v}\:+\:{x}\:\frac{{dv}}{{dx}}\:−{v}\:=\:{x}\:\mathrm{tan}\:{v}\: \\ $$$${x}\:\frac{{dv}}{{dx}}\:=\:{x}\:\mathrm{tan}\:{v}\:\Rightarrow\:\frac{{dv}}{\mathrm{tan}\:{v}}\:=\:{dx} \\ $$$$\int\:\frac{\mathrm{cos}\:{v}\:{dv}}{\mathrm{sin}\:{v}}\:=\:\int\:{dx}\: \\ $$$$\int\:\frac{{d}\left(\mathrm{sin}\:{v}\right)}{\mathrm{sin}\:{v}}\:=\:{x}\:+{c}\: \\ $$$$\mathrm{ln}\:\mid\mathrm{sin}\:{v}\mid\:=\:{x}+{c}\: \\ $$$$\mathrm{sin}\:{v}\:=\:\pm\:{C}\:{e}^{{x}} \\ $$$$\mathrm{sin}\:\left(\frac{{y}}{{x}}\right)\:=\:\pm{Ce}^{{x}} \\ $$
Answered by TANMAY PANACEA. last updated on 20/Apr/20
$$\frac{{xdy}−{ydx}}{{x}^{\mathrm{2}} }.\frac{{cos}\left(\frac{{y}}{{x}}\right)}{{sin}\left(\frac{{y}}{{x}}\right)}={dx} \\ $$$$\int\frac{{cos}\left(\frac{{y}}{{x}}\right){d}\left(\frac{{y}}{{x}}\right)}{{sin}\left(\frac{{y}}{{x}}\right)}=\int{dx} \\ $$$${ln}\left[{sin}\left(\frac{{y}}{{x}}\right)\right]={x}+{c} \\ $$