Menu Close

x-e-x-1-dx-for-x-gt-0-




Question Number 62453 by Tawa1 last updated on 21/Jun/19
∫ (x/(e^x  − 1))dx,            for  x > 0
$$\int\:\frac{\mathrm{x}}{\mathrm{e}^{\mathrm{x}} \:−\:\mathrm{1}}\mathrm{dx},\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{for}\:\:\mathrm{x}\:>\:\mathrm{0} \\ $$
Commented by mathmax by abdo last updated on 21/Jun/19
∫  (x/(e^x −1))dx =∫  ((x e^(−x) )/(1−e^(−x) ))dx =∫  (Σ_(n=0) ^∞  e^(−nx) )xe^(−x)  dx  = Σ_(n=0) ^∞  ∫  x e^(−(n+1)x)  dx =Σ_(n=0) ^∞  A_n   A_n =∫  x e^(−(n+1)x) dx =_((n+1)x =t)      ∫  (t/(n+1)) e^(−t)   (dt/(n+1))  =(1/((n+1)^2 )) ∫  t e^(−t)  dt    and by parts   ∫ t e^(−t)  dt =−te^(−t)  +∫ e^(−t)  dt  =−t e^(−t)  −e^(−t)  =−(t+1)e^(−t)  ⇒  A_n =−(1/((n+1)^2 )){ (t+1)e^(−t)  +c} ⇒Σ_(n=0) ^∞  A_n =−(t+1)e^(−t)  Σ_(n=0) ^∞  (1/((n+1)^2 )) −cΣ_(n=0) ^∞ (1/((n+1)^2 ))  =−(π^2 /6)(t+1)e^(−t)  −(π^2 /6)c  .
$$\int\:\:\frac{{x}}{{e}^{{x}} −\mathrm{1}}{dx}\:=\int\:\:\frac{{x}\:{e}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }{dx}\:=\int\:\:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \right){xe}^{−{x}} \:{dx} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\int\:\:{x}\:{e}^{−\left({n}+\mathrm{1}\right){x}} \:{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \\ $$$${A}_{{n}} =\int\:\:{x}\:{e}^{−\left({n}+\mathrm{1}\right){x}} {dx}\:=_{\left({n}+\mathrm{1}\right){x}\:={t}} \:\:\:\:\:\int\:\:\frac{{t}}{{n}+\mathrm{1}}\:{e}^{−{t}} \:\:\frac{{dt}}{{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\int\:\:{t}\:{e}^{−{t}} \:{dt}\:\:\:\:{and}\:{by}\:{parts}\: \\ $$$$\int\:{t}\:{e}^{−{t}} \:{dt}\:=−{te}^{−{t}} \:+\int\:{e}^{−{t}} \:{dt}\:\:=−{t}\:{e}^{−{t}} \:−{e}^{−{t}} \:=−\left({t}+\mathrm{1}\right){e}^{−{t}} \:\Rightarrow \\ $$$${A}_{{n}} =−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\left\{\:\left({t}+\mathrm{1}\right){e}^{−{t}} \:+{c}\right\}\:\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} =−\left({t}+\mathrm{1}\right){e}^{−{t}} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:−{c}\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\left({t}+\mathrm{1}\right){e}^{−{t}} \:−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}{c}\:\:. \\ $$
Commented by Tawa1 last updated on 21/Jun/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by mathmax by abdo last updated on 22/Jun/19
you are most welcome.
$${you}\:{are}\:{most}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *