Menu Close

x-e-x-1-dx-for-x-gt-0-




Question Number 62453 by Tawa1 last updated on 21/Jun/19
∫ (x/(e^x  − 1))dx,            for  x > 0
xex1dx,forx>0
Commented by mathmax by abdo last updated on 21/Jun/19
∫  (x/(e^x −1))dx =∫  ((x e^(−x) )/(1−e^(−x) ))dx =∫  (Σ_(n=0) ^∞  e^(−nx) )xe^(−x)  dx  = Σ_(n=0) ^∞  ∫  x e^(−(n+1)x)  dx =Σ_(n=0) ^∞  A_n   A_n =∫  x e^(−(n+1)x) dx =_((n+1)x =t)      ∫  (t/(n+1)) e^(−t)   (dt/(n+1))  =(1/((n+1)^2 )) ∫  t e^(−t)  dt    and by parts   ∫ t e^(−t)  dt =−te^(−t)  +∫ e^(−t)  dt  =−t e^(−t)  −e^(−t)  =−(t+1)e^(−t)  ⇒  A_n =−(1/((n+1)^2 )){ (t+1)e^(−t)  +c} ⇒Σ_(n=0) ^∞  A_n =−(t+1)e^(−t)  Σ_(n=0) ^∞  (1/((n+1)^2 )) −cΣ_(n=0) ^∞ (1/((n+1)^2 ))  =−(π^2 /6)(t+1)e^(−t)  −(π^2 /6)c  .
xex1dx=xex1exdx=(n=0enx)xexdx=n=0xe(n+1)xdx=n=0AnAn=xe(n+1)xdx=(n+1)x=ttn+1etdtn+1=1(n+1)2tetdtandbypartstetdt=tet+etdt=tetet=(t+1)etAn=1(n+1)2{(t+1)et+c}n=0An=(t+1)etn=01(n+1)2cn=01(n+1)2=π26(t+1)etπ26c.
Commented by Tawa1 last updated on 21/Jun/19
God bless you sir
Godblessyousir
Commented by mathmax by abdo last updated on 22/Jun/19
you are most welcome.
youaremostwelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *