Menu Close

x-i-1-i-n-n-real-number-positifs-wish-verfy-i-1-i-n-x-i-1-prove-that-1-i-n-x-i-2-1-n-




Question Number 26244 by abdo imad last updated on 22/Dec/17
 (x_i  )_(1≤i≤n)   n real number  positifs wish verfy   Σ_(i=1) ^(i=n)  x_i =1  prove that   Σ_(1≤i≤n) x_i ^2    ≥  (1/n)   .
$$\:\left({x}_{{i}} \:\right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \:\:{n}\:{real}\:{number}\:\:{positifs}\:{wish}\:{verfy}\:\:\:\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:{x}_{{i}} =\mathrm{1} \\ $$$${prove}\:{that}\:\:\:\sum_{\mathrm{1}\leqslant{i}\leqslant{n}} {x}_{{i}} ^{\mathrm{2}} \:\:\:\geqslant\:\:\frac{\mathrm{1}}{{n}}\:\:\:. \\ $$
Commented by abdo imad last updated on 28/Dec/17
for all seconses of  real numbers (a_i )_(1≤i≤n)  and  (b_i  )_(1≤i≤n)  positifs   Σ_(i=1) ^(i=n)  a_i  b_i   ≤ ( Σ_(i=1) ^(i=n)  a_i ^2  )^(1/2)   .( Σ_(i=1) ^(i=n)  b_i ^2   )^(1/2) (holderinequality)  let take b_i =1⇒  Σ_(i=1) ^(i=n)  a_i   ≤  (√n)  (Σ_(i=1) ^(i=n)   a_i ^2   )^(1/2)    and for a_i   x_i   we obtain    (  Σ_(i=) ^(i=n)  x_i  )^2 ≤ n ( Σ_(i=1) ^(i=n)  x_i ^2   )  ⇔   1 ≤  n ( Σ_(i=1) ^(i=n)   x_i ^2    )⇒       Σ_(i=1) ^(i=n)    x_i ^2   ≥  (1/n)  .
$${for}\:{all}\:{seconses}\:{of}\:\:{real}\:{numbers}\:\left({a}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \:{and}\:\:\left({b}_{{i}} \:\right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \:{positifs} \\ $$$$\:\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:{a}_{{i}} \:{b}_{{i}} \:\:\leqslant\:\left(\:\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:{a}_{{i}} ^{\mathrm{2}} \:\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:.\left(\:\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:{b}_{{i}} ^{\mathrm{2}} \:\:\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left({holderinequality}\right) \\ $$$${let}\:{take}\:{b}_{{i}} =\mathrm{1}\Rightarrow\:\:\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:{a}_{{i}} \:\:\leqslant\:\:\sqrt{{n}}\:\:\left(\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:\:{a}_{{i}} ^{\mathrm{2}} \:\:\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:{and}\:{for}\:{a}_{{i}} \:\:{x}_{{i}} \\ $$$${we}\:{obtain}\:\:\:\:\left(\:\:\sum_{{i}=} ^{{i}={n}} \:{x}_{{i}} \:\right)^{\mathrm{2}} \leqslant\:{n}\:\left(\:\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:{x}_{{i}} ^{\mathrm{2}} \:\:\right) \\ $$$$\Leftrightarrow\:\:\:\mathrm{1}\:\leqslant\:\:{n}\:\left(\:\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:\:{x}_{{i}} ^{\mathrm{2}} \:\:\:\right)\Rightarrow\:\:\:\:\:\:\:\sum_{{i}=\mathrm{1}} ^{{i}={n}} \:\:\:{x}_{{i}} ^{\mathrm{2}} \:\:\geqslant\:\:\frac{\mathrm{1}}{{n}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *