Menu Close

x-i-1-i-n-n-real-number-positifs-wish-verfy-i-1-i-n-x-i-1-prove-that-1-i-n-x-i-2-1-n-




Question Number 26244 by abdo imad last updated on 22/Dec/17
 (x_i  )_(1≤i≤n)   n real number  positifs wish verfy   Σ_(i=1) ^(i=n)  x_i =1  prove that   Σ_(1≤i≤n) x_i ^2    ≥  (1/n)   .
(xi)1innrealnumberpositifswishverfyi=1i=nxi=1provethat1inxi21n.
Commented by abdo imad last updated on 28/Dec/17
for all seconses of  real numbers (a_i )_(1≤i≤n)  and  (b_i  )_(1≤i≤n)  positifs   Σ_(i=1) ^(i=n)  a_i  b_i   ≤ ( Σ_(i=1) ^(i=n)  a_i ^2  )^(1/2)   .( Σ_(i=1) ^(i=n)  b_i ^2   )^(1/2) (holderinequality)  let take b_i =1⇒  Σ_(i=1) ^(i=n)  a_i   ≤  (√n)  (Σ_(i=1) ^(i=n)   a_i ^2   )^(1/2)    and for a_i   x_i   we obtain    (  Σ_(i=) ^(i=n)  x_i  )^2 ≤ n ( Σ_(i=1) ^(i=n)  x_i ^2   )  ⇔   1 ≤  n ( Σ_(i=1) ^(i=n)   x_i ^2    )⇒       Σ_(i=1) ^(i=n)    x_i ^2   ≥  (1/n)  .
forallseconsesofrealnumbers(ai)1inand(bi)1inpositifsi=1i=naibi(i=1i=nai2)12.(i=1i=nbi2)12(holderinequality)lettakebi=1i=1i=nain(i=1i=nai2)12andforaixiweobtain(i=i=nxi)2n(i=1i=nxi2)1n(i=1i=nxi2)i=1i=nxi21n.

Leave a Reply

Your email address will not be published. Required fields are marked *