Menu Close

x-i-dx-




Question Number 60027 by aliesam last updated on 17/May/19
∫x^i dx=?
$$\int{x}^{{i}} {dx}=? \\ $$
Answered by MJS last updated on 17/May/19
∫x^i dx=(1/(1+i))x^(1+i) +C=((1−i)/2)x^(1+i)
$$\int{x}^{\mathrm{i}} {dx}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{i}}{x}^{\mathrm{1}+\mathrm{i}} +{C}=\frac{\mathrm{1}−\mathrm{i}}{\mathrm{2}}{x}^{\mathrm{1}+\mathrm{i}} \\ $$
Commented by MJS last updated on 17/May/19
x=re^(iθ)  ⇒ x^i =r^i e^(−θ) =(1/e^θ )e^(i ln r)   x^(1+i) =r^(1+i) e^((−1+i)θ) =r×r^i ×(1/e^θ )×e^(iθ) =(r/e^θ )e^(i (θ+ln r))   (1/2)−(1/2)i=((√2)/2)e^(−i(π/4))   ((1/2)−(1/2)i)x^(1+i) =(((√2)r)/(2e^θ ))e^(i(θ+ln r −(π/4)))
$${x}={r}\mathrm{e}^{\mathrm{i}\theta} \:\Rightarrow\:{x}^{\mathrm{i}} ={r}^{\mathrm{i}} \mathrm{e}^{−\theta} =\frac{\mathrm{1}}{\mathrm{e}^{\theta} }\mathrm{e}^{\mathrm{i}\:\mathrm{ln}\:{r}} \\ $$$${x}^{\mathrm{1}+\mathrm{i}} ={r}^{\mathrm{1}+\mathrm{i}} \mathrm{e}^{\left(−\mathrm{1}+\mathrm{i}\right)\theta} ={r}×{r}^{\mathrm{i}} ×\frac{\mathrm{1}}{\mathrm{e}^{\theta} }×\mathrm{e}^{\mathrm{i}\theta} =\frac{{r}}{\mathrm{e}^{\theta} }\mathrm{e}^{\mathrm{i}\:\left(\theta+\mathrm{ln}\:{r}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{4}}} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i}\right){x}^{\mathrm{1}+\mathrm{i}} =\frac{\sqrt{\mathrm{2}}{r}}{\mathrm{2e}^{\theta} }\mathrm{e}^{\mathrm{i}\left(\theta+\mathrm{ln}\:{r}\:−\frac{\pi}{\mathrm{4}}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *