Question Number 129809 by mohammad17 last updated on 19/Jan/21
$$\left({x}+{iy}\right)^{\mathrm{3}} =\frac{−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}{i}}{\mathrm{1}−\sqrt{\mathrm{7}}{i}}\:\:{find}\:{x},{y} \\ $$
Answered by Olaf last updated on 20/Jan/21
$$\left({x}+{iy}\:\right)^{\mathrm{3}} \:=\:\frac{−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}{i}}{\mathrm{1}−\sqrt{\mathrm{7}}{i}} \\ $$$$\mathrm{Let}\:{x}+{iy}\:=\:\rho{e}^{{i}\theta} \\ $$$$\mid\frac{−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}{i}}{\mathrm{1}−\sqrt{\mathrm{7}}{i}}\mid\:=\:\frac{\sqrt{\mathrm{36}+\mathrm{28}}}{\:\sqrt{\mathrm{1}+\mathrm{7}}}\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mathrm{arg}\left(\frac{−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}{i}}{\mathrm{1}−\sqrt{\mathrm{7}}{i}}\right)\:=\:\mathrm{arg}\left(−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}\right)−\mathrm{arg}\left(\mathrm{1}−\sqrt{\mathrm{7}}\right)+\mathrm{2}{k}\pi \\ $$$$=\:\mathrm{arctan}\left(−\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}\right)−\mathrm{arctan}\left(−\sqrt{\mathrm{7}}\right)+\mathrm{2}{k}\pi \\ $$$$=\:\mathrm{arctan}\left(\sqrt{\mathrm{7}}\right)−\mathrm{arctan}\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}\right)+\mathrm{2}{k}\pi \\ $$$$=\:\mathrm{arctan}\left(\frac{\sqrt{\mathrm{7}}−\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}}{\mathrm{1}+\sqrt{\mathrm{7}}×\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}}\right)+\mathrm{2}{k}\pi \\ $$$$=\:\mathrm{arctan}\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{5}}\right)+\mathrm{2}{k}\pi \\ $$$$\rho^{\mathrm{3}} {e}^{{i}\mathrm{3}\theta} \:=\:\mathrm{2}\sqrt{\mathrm{2}}{e}^{{i}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{5}}\right)+\mathrm{2}{k}\pi} \\ $$$$\rho\:=\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\:\mathrm{and}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{5}}\right)+\frac{\mathrm{2}}{\mathrm{3}}{k}\pi \\ $$$${x}\:=\:\rho\mathrm{cos}\theta\:\mathrm{and}\:{y}\:=\:\rho\mathrm{sin}\theta \\ $$