Menu Close

x-log-2-4-x-2-x-1-4-x-




Question Number 170855 by mnjuly1970 last updated on 01/Jun/22
     ⌊x⌋= log_2 (4^( x) −2^( x) −1)⇒ ⌊ 4^( x) ⌋=?
x=log2(4x2x1)4x=?
Answered by floor(10²Eta[1]) last updated on 01/Jun/22
⌊x⌋=n⇒x=n+α, 0≤α<1  ⇒2^n =4^n .4^α −2^α 2^n −1  4^n −2^n −1≤2^n =4^n .4^α −2^α 2^n −1<4.4^n −2.2^n −1  2^n =y  y^2 −2y−1≤0⇒1−(√2)≤y≤1+(√2)  ⇒y∈{1,2}  4y^2 −3y−1>0⇒y<((−1)/4) e y>1  ⇒y>1  ⇒y=2⇒n=1  ⇒x=1+α, 0≤α<1, ⌊x⌋=1  1=log_2 (4^(1+α) −2^(1+α) −1)  ⇒3=4.4^α −2.2^α , z=2^α   4z^2 −2z−3=0  1≤z=((1±(√(13)))/4)=2^α <2  ⇒2^α =((1+(√(13)))/4)⇒α=log_2 (((1+(√(13)))/4))    4^x =4^(1+α) =4.4^(log_2 (((1+(√(13)))/4))) =4(((1+(√(13)))/4))^2   ((7+(√(13)))/2)=4^x ⇒⌊4^x ⌋=5
x=nx=n+α,0α<12n=4n.4α2α2n14n2n12n=4n.4α2α2n1<4.4n2.2n12n=yy22y1012y1+2y{1,2}4y23y1>0y<14ey>1y>1y=2n=1x=1+α,0α<1,x=11=log2(41+α21+α1)3=4.4α2.2α,z=2α4z22z3=01z=1±134=2α<22α=1+134α=log2(1+134)4x=41+α=4.4log2(1+134)=4(1+134)27+132=4x4x=5
Commented by Tawa11 last updated on 02/Jun/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *