Menu Close

x-log-xy-y-log-xy-x-log-x-y-y-log-x-y-0-find-x-y-




Question Number 85826 by jagoll last updated on 25/Mar/20
^x log (xy).^y log (xy) +^x log (x−y).^y log (x−y)=0  find x+y
xlog(xy).ylog(xy)+xlog(xy).ylog(xy)=0findx+y
Commented by john santu last updated on 25/Mar/20
^x log (xy).^y log (xy) = −^x log (x−y).^y log (x−y)  ^((x−y) )  log (xy) = −^((xy)) log (x−y)  ^((x−y)) log (xy) = ^(1/(xy))  log (x−y)  ⇒ { ((x−y = (1/(xy)))),((xy = x−y )) :}  ⇒xy = 1 ∧ x−y = 1  y = (1/x) ⇒ x−(1/x) = 1  x^2 −x−1 = 0 ⇒ x = ((1+ (√5))/2)  ∧ y = (2/( (√5) +1)) = ((2((√5)−1))/4)   y = (((√5)−1)/2) . so x+y = (√5)
xlog(xy).ylog(xy)=xlog(xy).ylog(xy)(xy)log(xy)=(xy)log(xy)(xy)log(xy)=1xylog(xy){xy=1xyxy=xyxy=1xy=1y=1xx1x=1x2x1=0x=1+52y=25+1=2(51)4y=512.sox+y=5
Commented by jagoll last updated on 25/Mar/20
great sir
greatsir
Answered by $@ty@m123 last updated on 07/Apr/20
((log xy.log xy)/(log x.log y))+((log (x−y).log (x−y))/(log x.log y))=0  (log xy)^2 +{log (x−y)}^2 =0  ⇒log xy=0    ∣   log (x−y)=0  ⇒xy=1            ∣  x−y=1   ⇒x=(1/y)             ∣  x−y=1   (1/y)−y=1           ∣ x=y+1  ⇒y=(((√5) −1)/2)     ∣ x=(((√5)+1)/2)  x+y=(√5)
logxy.logxylogx.logy+log(xy).log(xy)logx.logy=0(logxy)2+{log(xy)}2=0logxy=0log(xy)=0xy=1xy=1x=1yxy=11yy=1x=y+1y=512x=5+12x+y=5
Commented by jagoll last updated on 25/Mar/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *