Menu Close

x-n-1-n-n-10-n-2-1-n-N-show-if-the-sequence-is-limited-




Question Number 109765 by Karani last updated on 25/Aug/20
(x_n )=(((−1)^n n+10)/( (√(n^2 +1)))),n∈N show if the sequence is limited.
$$\left({x}_{{n}} \right)=\frac{\left(−\mathrm{1}\right)^{{n}} {n}+\mathrm{10}}{\:\sqrt{{n}^{\mathrm{2}} +\mathrm{1}}},{n}\in{N}\:\mathrm{show}\:\mathrm{if}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{limited}. \\ $$
Answered by mathmax by abdo last updated on 25/Aug/20
∣x_n ∣ ≤((n+10)/( (√(n^2  +1))))   we have  (√(n^2  +1))>n ⇒(1/( (√(n^2 +1))))<(1/n) ⇒  ∣x_n ∣<((n+10)/n) =1+((10)/n)≤11  ⇒ (x_n ) is limited
$$\mid\mathrm{x}_{\mathrm{n}} \mid\:\leqslant\frac{\mathrm{n}+\mathrm{10}}{\:\sqrt{\mathrm{n}^{\mathrm{2}} \:+\mathrm{1}}}\:\:\:\mathrm{we}\:\mathrm{have}\:\:\sqrt{\mathrm{n}^{\mathrm{2}} \:+\mathrm{1}}>\mathrm{n}\:\Rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}}<\frac{\mathrm{1}}{\mathrm{n}}\:\Rightarrow \\ $$$$\mid\mathrm{x}_{\mathrm{n}} \mid<\frac{\mathrm{n}+\mathrm{10}}{\mathrm{n}}\:=\mathrm{1}+\frac{\mathrm{10}}{\mathrm{n}}\leqslant\mathrm{11}\:\:\Rightarrow\:\left(\mathrm{x}_{\mathrm{n}} \right)\:\mathrm{is}\:\mathrm{limited} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *