Question Number 152186 by Tawa11 last updated on 26/Aug/21
$$\int\mathrm{x}^{\mathrm{n}} \:\mathrm{cos}\left(\mathrm{nx}\right)\:\mathrm{dx} \\ $$
Answered by mindispower last updated on 26/Aug/21
$${nx}={y} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{{n}^{{n}+\mathrm{1}} }\int{y}^{{n}} {cos}\left({x}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}.{n}^{{n}+\mathrm{1}} }\left(\int{y}^{{n}} {e}^{{iy}} {dy}+\int{y}^{{n}} {e}^{−{iy}} {dy}\right) \\ $$$${iy}=−{t},{in}\:{first}\:−{iy}=−{w}\:\:\mathrm{2}{nd}\Rightarrow \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{{n}^{{n}+\mathrm{1}} }\left({i}^{{n}+\mathrm{1}} \int{t}^{{n}} {e}^{−{t}} {dt}+\left(−{i}\right)^{{n}+\mathrm{1}} \int{w}^{{n}} {e}^{−{w}} {dt}\right) \\ $$$$\frac{{i}^{{n}+\mathrm{1}} }{\mathrm{2}.{n}^{{n}+\mathrm{1}} }\int{t}^{{n}} {e}^{−{t}} {dt}+\frac{\left(−{i}\right)^{{n}+\mathrm{1}} }{{n}^{{n}+\mathrm{1}} }\int{w}^{{n}} {e}^{−{w}} {dw} \\ $$$${recall}\:\Gamma\left({a},{x}\right)\:{incomplet}\:{Gamma}\:{function} \\ $$$$\Gamma\left({a},{x}\right):\:\int_{\mathrm{0}} ^{{a}} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$${We}\:{Get}\: \\ $$$$\frac{{i}^{{n}+\mathrm{1}} }{\mathrm{2}.{n}^{{n}+\mathrm{1}} }\Gamma\left({t},{n}+\mathrm{1}\right)+\frac{\left(−{i}\right)^{{n}+\mathrm{1}} }{\mathrm{2}.{n}^{{n}+\mathrm{1}} }\Gamma\left({w},{n}+\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{i}}{{n}}\right)^{{n}+\mathrm{1}} \Gamma\left(−{inx},{n}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{{i}}{{n}}\right)^{{n}+\mathrm{1}} \Gamma\left({inx},{n}+\mathrm{1}\right) \\ $$$$\int{x}^{{n}} {cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{i}}{{n}}\right)^{{n}+\mathrm{1}} \left(\Gamma\left(−{inx},{n}+\mathrm{1}\right)+\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \Gamma\left({inx},{n}+\mathrm{1}\right)\right)+{c} \\ $$$$ \\ $$
Commented by Tawa11 last updated on 26/Aug/21
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$
Commented by mindispower last updated on 28/Aug/21
$${pleasur}\:{sir} \\ $$$$ \\ $$