Menu Close

x-n-n-x-x-




Question Number 164279 by amin96 last updated on 15/Jan/22
x^n =n^x    x=?
$${x}^{{n}} ={n}^{{x}} \:\:\:{x}=? \\ $$
Answered by Saiki last updated on 15/Jan/22
lnx^n =lnn^x   nlnx=xlnn  ((lnx)/x)=((lnn)/n)  x^(−1) lnx=((lnn)/n)  e^(lnx^(−1) ) lnx=((lnn)/n)  e^(−lnx) lnx=((lnn)/n)  −lnxe^(−lnx) =−((lnn)/n)  W(−lnxe^(−lnx) )=W(−((lnn)/n))  −lnx=W(−((lnn)/n))  x=e^(−W(−((lnn)/n)))   solution by CASIO......
$${lnx}^{{n}} ={lnn}^{{x}} \\ $$$${nlnx}={xlnn} \\ $$$$\frac{{lnx}}{{x}}=\frac{{lnn}}{{n}} \\ $$$${x}^{−\mathrm{1}} {lnx}=\frac{{lnn}}{{n}} \\ $$$${e}^{{lnx}^{−\mathrm{1}} } {lnx}=\frac{{lnn}}{{n}} \\ $$$${e}^{−{lnx}} {lnx}=\frac{{lnn}}{{n}} \\ $$$$−{lnxe}^{−{lnx}} =−\frac{{lnn}}{{n}} \\ $$$${W}\left(−{lnxe}^{−{lnx}} \right)={W}\left(−\frac{{lnn}}{{n}}\right) \\ $$$$−{lnx}={W}\left(−\frac{{lnn}}{{n}}\right) \\ $$$${x}={e}^{−{W}\left(−\frac{{lnn}}{{n}}\right)} \\ $$$${solution}\:{by}\:{CASIO}…… \\ $$
Answered by MathsFan last updated on 15/Jan/22
 x•n^(−(x/n)) =1  xlnn•e^(−(x/n)lnn) =lnn   −((xlnn)/n)•e^(−(x/n)lnn) =−((lnn)/n)  −((xlnn)/n)=W(−((lnn)/n))   x=−((nW(−((lnn)/n)))/(lnn))
$$\:{x}\bullet{n}^{−\frac{{x}}{{n}}} =\mathrm{1} \\ $$$${xlnn}\bullet{e}^{−\frac{{x}}{{n}}{lnn}} ={lnn} \\ $$$$\:−\frac{{xlnn}}{{n}}\bullet{e}^{−\frac{{x}}{{n}}{lnn}} =−\frac{{lnn}}{{n}} \\ $$$$−\frac{{xlnn}}{{n}}={W}\left(−\frac{{lnn}}{{n}}\right) \\ $$$$\:{x}=−\frac{{nW}\left(−\frac{{lnn}}{{n}}\right)}{{lnn}} \\ $$$$ \\ $$$$\: \\ $$
Answered by mr W last updated on 15/Jan/22
if n=even integer: e.g. x^2 =2^x   x=±n^(x/n)   x=±e^((x/n)ln n)   (−(x/n)ln n)e^(−(x/n)ln n) =±((ln n)/n)  (−(x/n)ln n)=W(±((ln n)/n))  ⇒x=−(n/(ln n))W(±((ln n)/n))  similarly, if n≠even integer, e.g. x^3 =3^x :  ⇒x=−(n/(ln n))W(−((ln n)/n))
$${if}\:{n}={even}\:{integer}:\:{e}.{g}.\:{x}^{\mathrm{2}} =\mathrm{2}^{{x}} \\ $$$${x}=\pm{n}^{\frac{{x}}{{n}}} \\ $$$${x}=\pm{e}^{\frac{{x}}{{n}}\mathrm{ln}\:{n}} \\ $$$$\left(−\frac{{x}}{{n}}\mathrm{ln}\:{n}\right){e}^{−\frac{{x}}{{n}}\mathrm{ln}\:{n}} =\pm\frac{\mathrm{ln}\:{n}}{{n}} \\ $$$$\left(−\frac{{x}}{{n}}\mathrm{ln}\:{n}\right)={W}\left(\pm\frac{\mathrm{ln}\:{n}}{{n}}\right) \\ $$$$\Rightarrow{x}=−\frac{{n}}{\mathrm{ln}\:{n}}{W}\left(\pm\frac{\mathrm{ln}\:{n}}{{n}}\right) \\ $$$${similarly},\:{if}\:{n}\neq{even}\:{integer},\:{e}.{g}.\:{x}^{\mathrm{3}} =\mathrm{3}^{{x}} : \\ $$$$\Rightarrow{x}=−\frac{{n}}{\mathrm{ln}\:{n}}{W}\left(−\frac{\mathrm{ln}\:{n}}{{n}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *