Menu Close

x-n-x-n-2-r-0-2n-C-r-2n-x-r-dx-The-result-is-a-little-pretty-




Question Number 94432 by Tony Lin last updated on 18/May/20
∫ ((x^n −x^(n−2) )/(Σ_(r=0) ^(2n) C_r ^(2n) x^r ))dx=?  The result is a little pretty
$$\int\:\frac{{x}^{{n}} −{x}^{{n}−\mathrm{2}} }{\underset{{r}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}{C}_{{r}} ^{\mathrm{2}{n}} {x}^{{r}} }{dx}=? \\ $$$${The}\:{result}\:{is}\:{a}\:{little}\:{pretty} \\ $$
Commented by PRITHWISH SEN 2 last updated on 18/May/20
∫((x^n −x^(n−2) )/((1+x)^(2n) ))dx=∫(((1−(1/x^2 )))/(((1/x)+x+2)^n ))dx  put x+(1/x)+2=t
$$\int\frac{\mathrm{x}^{\mathrm{n}} −\mathrm{x}^{\mathrm{n}−\mathrm{2}} }{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2n}} }\mathrm{dx}=\int\frac{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)}{\left(\frac{\mathrm{1}}{\mathrm{x}}+\mathrm{x}+\mathrm{2}\right)^{\mathrm{n}} }\mathrm{dx}\:\:\mathrm{put}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}+\mathrm{2}=\mathrm{t} \\ $$
Commented by Tony Lin last updated on 19/May/20
thanks sir
$${thanks}\:{sir} \\ $$
Commented by PRITHWISH SEN 2 last updated on 19/May/20
welcome sir
$$\mathrm{welcome}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *